

The Project Gutenberg eBook of Free as in
Freedom: Richard Stallman’s Crusade for Free

Software

This ebook is for the use of anyone anywhere in the United
States and most other parts of the world at no cost and with
almost no restrictions whatsoever. You may copy it, give it
away or re-use it under the terms of the Project Gutenberg
License included with this ebook or online at
www.gutenberg.org. If you are not located in the United
States, you will have to check the laws of the country where
you are located before using this eBook.

*** This is a COPYRIGHTED Project Gutenberg eBook.
Details Below. ***

*** Please follow the copyright guidelines in this file. ***

Title: Free as in Freedom: Richard Stallman’s Crusade for Free
Software

Author: Sam Williams

Release date: May 1, 2004 [eBook #5768]
Most recently updated: August 21, 2012

Language: English

Credits: Produced by Craig Morehouse

*** START OF THE PROJECT GUTENBERG EBOOK
FREE AS IN FREEDOM: RICHARD STALLMAN’S

CRUSADE FOR FREE SOFTWARE ***

https://www.gutenberg.org/

Produced by Craig Morehouse

Copyright (C) 2002 by Sam Williams.

Free As in Freedom: Richard Stallman’s Crusade for Free
Software.

By Sam Williams

Available on the web at: http://www.faifzilla.org/

Produced under the Free Documentation License

Table of Contents

Chapter 1 For Want of a Printer Chapter 2 2001: A Hacker’s Odyssey
Chapter 3 A Portrait of the Hacker as a Young Man Chapter 4 Impeach God
Chapter 5 Small Puddle of Freedom Chapter 6 The Emacs Commune Chapter
7 A Stark Moral Choice Chapter 8 St. Ignucius Chapter 9 The GNU General
Public License Chapter 10 GNU/Linux Chapter 11 Open Source Chapter 12 A
Brief Journey Through Hacker Hell Chapter 13 Continuing the Fight Chapter
14 Epilogue: Chapter 15 Appendix A : Terminology Chapter 16 Appendix B
Hack, Hackers, and Hacking Chapter 17 Appendix C GNU Free
Documentation License (GFDL)

Preface

The work of Richard M. Stallman literally speaks for itself.
From the documented source code to the published papers to
the recorded speeches, few people have expressed as much
willingness to lay their thoughts and their work on the line.

Such openness-if one can pardon a momentary un-Stallman
adjective-is refreshing. After all, we live in a society that treats
information, especially personal information, as a valuable
commodity. The question quickly arises. Why would anybody
want to part with so much information and yet appear to
demand nothing in return?

As we shall see in later chapters, Stallman does not part
with his words or his work altruistically. Every program,

speech, and on-the-record bon mot comes with a price, albeit
not the kind of price most people are used to paying.

I bring this up not as a warning, but as an admission. As a
person who has spent the last year digging up facts on
Stallman’s personal history, it’s more than a little intimidating
going up against the Stallman oeuvre. “Never pick a fight with
a man who buys his ink by the barrel,” goes the old Mark
Twain adage. In the case of Stallman, never attempt the
definitive biography of a man who trusts his every thought to
the public record.

For the readers who have decided to trust a few hours of
their time to exploring this book, I can confidently state that
there are facts and quotes in here that one won’t find in any
Slashdot story or Google search. Gaining access to these facts
involves paying a price, however. In the case of the book
version, you can pay for these facts the traditional manner, i.e.,
by purchasing the book. In the case of the electronic versions,
you can pay for these facts in the free software manner.
Thanks to the folks at O’Reilly & Associates, this book is
being distributed under the GNU Free Documentation License,
meaning you can help to improve the work or create a
personalized version and release that version under the same
license.

If you are reading an electronic version and prefer to accept
the latter payment option, that is, if you want to improve or
expand this book for future readers, I welcome your input.
Starting in June, 2002, I will be publishing a bare bones
HTML version of the book on the web site,
http://www.faifzilla.org. My aim is to update it regularly and
expand the Free as in Freedom story as events warrant. If you
choose to take the latter course, please review Appendix C of

this book. It provides a copy of your rights under the GNU
Free Documentation License.

For those who just plan to sit back and read, online or
elsewhere, I consider your attention an equally valuable form
of payment. Don’t be surprised, though, if you, too, find
yourself looking for other ways to reward the good will that
made this work possible.

One final note: this is a work of journalism, but it is also a
work of technical documentation. In the process of writing and
editing this book, the editors and I have weighed the
comments and factual input of various participants in the story,
including Richard Stallman himself. We realize there are many
technical details in this story that may benefit from additional
or refined information. As this book is released under the
GFDL, we are accepting patches just like we would with any
free software program. Accepted changes will be posted
electronically and will eventually be incorporated into future
printed versions of this work. If you would like to contribute
to the further improvement of this book, you can reach me at
sam@inow.com. Comments and Questions Please address
comments and questions concerning this book to the publisher:
O’Reilly & Associates, Inc. 1005 Gravenstein Highway North
Sebastopol, CA 95472 (800) 998-9938 (in the United States or
Canada) (707) 829-0515 (international/local) (707) 829-0104
(fax) There is a web page for this book, which lists errata,
examples, or any additional information. The site also includes
a link to a forum where you can discuss the book with the
author and other readers. You can access this site at:
http://www.oreilly.com/catalog/freedom/ To comment or ask
technical questions about this book, send email to:
bookquestions@oreilly.com For more information about
books, conferences, Resource Centers, and the O’Reilly

Network, see the O’Reilly web site at: http://www.oreilly.com
Acknowledgments Special thanks to Henning Gutmann for
sticking by this book. Special thanks to Aaron Oas for
suggesting the idea to Tracy in the first place. Thanks to
Laurie Petrycki, Jeffrey Holcomb, and all the others at
O’Reilly & Associates. Thanks to Tim O’Reilly for backing
this book. Thanks to all the first-draft reviewers: Bruce Perens,
Eric Raymond, Eric Allman, Jon Orwant, Julie and Gerald Jay
Sussman, Hal Abelson, and Guy Steele. I hope you enjoy this
typo-free version. Thanks to Alice Lippman for the interviews,
cookies, and photographs. Thanks to my family, Steve, Jane,
Tish, and Dave. And finally, last but not least: thanks to
Richard Stallman for having the guts and endurance to “show
us the code.”

Sam Williams

For Want of a Printer

I fear the Greeks. Even when they bring gifts.
—-Virgil The Aeneid

The new printer was jammed, again.

Richard M. Stallman, a staff software programmer at the
Massachusetts Institute of Technology’s Artificial Intelligence
Laboratory (AI Lab), discovered the malfunction the hard way.
An hour after sending off a 50-page file to the office laser
printer, Stallman, 27, broke off a productive work session to
retrieve his documents. Upon arrival, he found only four pages
in the printer’s tray. To make matters even more frustrating,
the four pages belonged to another user, meaning that
Stallman’s print job and the unfinished portion of somebody
else’s print job were still trapped somewhere within the
electrical plumbing of the lab’s computer network.

Waiting for machines is an occupational hazard when you’re
a software programmer, so Stallman took his frustration with a
grain of salt. Still, the difference between waiting for a
machine and waiting on a machine is a sizable one. It wasn’t
the first time he’d been forced to stand over the printer,
watching pages print out one by one. As a person who spent
the bulk of his days and nights improving the efficiency of
machines and the software programs that controlled them,
Stallman felt a natural urge to open up the machine, look at the
guts, and seek out the root of the problem.

Unfortunately, Stallman’s skills as a computer programmer
did not extend to the mechanical-engineering realm. As freshly
printed documents poured out of the machine, Stallman had a
chance to reflect on other ways to circumvent the printing jam
problem.

How long ago had it been that the staff members at the AI
Lab had welcomed the new printer with open arms? Stallman
wondered. The machine had been a donation from the Xerox
Corporation. A cutting edge prototype, it was a modified
version of the popular Xerox photocopier. Only instead of
making copies, it relied on software data piped in over a
computer network to turn that data into professional-looking
documents. Created by engineers at the world-famous Xerox
Palo Alto Research Facility, it was, quite simply, an early taste
of the desktop-printing revolution that would seize the rest of
the computing industry by the end of the decade.

Driven by an instinctual urge to play with the best new
equipment, programmers at the AI Lab promptly integrated the
new machine into the lab’s sophisticated computing
infrastructure. The results had been immediately pleasing.
Unlike the lab’s old laser printer, the new Xerox machine was
fast. Pages came flying out at a rate of one per second, turning

a 20-minute print job into a 2-minute print job. The new
machine was also more precise. Circles came out looking like
circles, not ovals. Straight lines came out looking like straight
lines, not low-amplitude sine waves.

It was, for all intents and purposes, a gift too good to refuse.

It wasn’t until a few weeks after its arrival that the
machine’s flaws began to surface. Chief among the drawbacks
was the machine’s inherent susceptibility to paper jams.
Engineering-minded programmers quickly understood the
reason behind the flaw. As a photocopier, the machine
generally required the direct oversight of a human operator.
Figuring that these human operators would always be on hand
to fix a paper jam, if it occurred, Xerox engineers had devoted
their time and energies to eliminating other pesky problems. In
engineering terms, user diligence was built into the system.

In modifying the machine for printer use, Xerox engineers
had changed the user-machine relationship in a subtle but
profound way. Instead of making the machine subservient to
an individual human operator, they made it subservient to an
entire networked population of human operators. Instead of
standing directly over the machine, a human user on one end
of the network sent his print command through an extended
bucket-brigade of machines, expecting the desired content to
arrive at the targeted destination and in proper form. It wasn’t
until he finally went to check up on the final output that he
realized how little of the desired content had made it through.

Stallman himself had been of the first to identify the
problem and the first to suggest a remedy. Years before, when
the lab was still using its old printer, Stallman had solved a
similar problem by opening up the software program that
regulated the printer on the lab’s PDP-11 machine. Stallman

couldn’t eliminate paper jams, but he could insert a software
command that ordered the PDP-11 to check the printer
periodically and report back to the PDP-10, the lab’s central
computer. To ensure that one user’s negligence didn’t bog
down an entire line of print jobs, Stallman also inserted a
software command that instructed the PDP-10 to notify every
user with a waiting print job that the printer was jammed. The
notice was simple, something along the lines of “The printer is
jammed, please fix it,” and because it went out to the people
with the most pressing need to fix the problem, chances were
higher that the problem got fixed in due time.

As fixes go, Stallman’s was oblique but elegant. It didn’t fix
the mechanical side of the problem, but it did the next best
thing by closing the information loop between user and
machine. Thanks to a few additional lines of software code, AI
Lab employees could eliminate the 10 or 15 minutes wasted
each week in running back and forth to check on the printer. In
programming terms, Stallman’s fix took advantage of the
amplified intelligence of the overall network.

“If you got that message, you couldn’t assume somebody
else would fix it,” says Stallman, recalling the logic. “You had
to go to the printer. A minute or two after the printer got in
trouble, the two or three people who got messages arrive to fix
the machine. Of those two or three people, one of them, at
least, would usually know how to fix the problem.”

Such clever fixes were a trademark of the AI Lab and its
indigenous population of programmers. Indeed, the best
programmers at the AI Lab disdained the term programmer,
preferring the more slangy occupational title of hacker instead.
The job title covered a host of activities-everything from
creative mirth making to the improvement of existing software
and computer systems. Implicit within the title, however, was

the old-fashioned notion of Yankee ingenuity. To be a hacker,
one had to accept the philosophy that writing a software
program was only the beginning. Improving a program was
the true test of a hacker’s skills.For more on the term “hacker,”
see Appendix B.

Such a philosophy was a major reason why companies like
Xerox made it a policy to donate their machines and software
programs to places where hackers typically congregated. If
hackers improved the software, companies could borrow back
the improvements, incorporating them into update versions for
the commercial marketplace. In corporate terms, hackers were
a leveragable community asset, an auxiliary research-and-
development division available at minimal cost.

It was because of this give-and-take philosophy that when
Stallman spotted the print-jam defect in the Xerox laser
printer, he didn’t panic. He simply looked for a way to update
the old fix or ” hack” for the new system. In the course of
looking up the Xerox laser-printer software, however,
Stallman made a troubling discovery. The printer didn’t have
any software, at least nothing Stallman or a fellow
programmer could read. Until then, most companies had made
it a form of courtesy to publish source-code files-readable text
files that documented the individual software commands that
told a machine what to do. Xerox, in this instance, had
provided software files in precompiled, or binary, form.
Programmers were free to open the files up if they wanted to,
but unless they were an expert in deciphering an endless
stream of ones and zeroes, the resulting text was pure
gibberish.

Although Stallman knew plenty about computers, he was
not an expert in translating binary files. As a hacker, however,
he had other resources at his disposal. The notion of

information sharing was so central to the hacker culture that
Stallman knew it was only a matter of time before some
hacker in some university lab or corporate computer room
proffered a version of the laser-printer source code with the
desired source-code files.

After the first few printer jams, Stallman comforted himself
with the memory of a similar situation years before. The lab
had needed a cross-network program to help the PDP-11 work
more efficiently with the PDP-10. The lab’s hackers were
more than up to the task, but Stallman, a Harvard alumnus,
recalled a similar program written by programmers at the
Harvard computer-science department. The Harvard computer
lab used the same model computer, the PDP-10, albeit with a
different operating system. The Harvard computer lab also had
a policy requiring that all programs installed on the PDP-10
had to come with published source-code files.

Taking advantage of his access to the Harvard computer lab,
Stallman dropped in, made a copy of the cross-network source
code, and brought it back to the AI Lab. He then rewrote the
source code to make it more suitable for the AI Lab’s
operating system. With no muss and little fuss, the AI Lab
shored up a major gap in its software infrastructure. Stallman
even added a few features not found in the original Harvard
program, making the program even more useful. “We wound
up using it for several years,” Stallman says.

From the perspective of a 1970s-era programmer, the
transaction was the software equivalent of a neighbor stopping
by to borrow a power tool or a cup of sugar from a neighbor.
The only difference was that in borrowing a copy of the
software for the AI Lab, Stallman had done nothing to deprive
Harvard hackers the use of their original program. If anything,
Harvard hackers gained in the process, because Stallman had

introduced his own additional features to the program, features
that hackers at Harvard were perfectly free to borrow in return.
Although nobody at Harvard ever came over to borrow the
program back, Stallman does recall a programmer at the
private engineering firm, Bolt, Beranek & Newman,
borrowing the program and adding a few additional features,
which Stallman eventually reintegrated into the AI Lab’s own
source-code archive.

“A program would develop the way a city develops,” says
Stallman, recalling the software infrastructure of the AI Lab.
“Parts would get replaced and rebuilt. New things would get
added on. But you could always look at a certain part and say,
`Hmm, by the style, I see this part was written back in the
early 60s and this part was written in the mid-1970s.’”

Through this simple system of intellectual accretion,
hackers at the AI Lab and other places built up robust
creations. On the west coast, computer scientists at UC
Berkeley, working in cooperation with a few low-level
engineers at AT&T, had built up an entire operating system
using this system. Dubbed Unix, a play on an older, more
academically respectable operating system called Multics, the
software system was available to any programmer willing to
pay for the cost of copying the program onto a new magnetic
tape and shipping it. Not every programmer participating in
this culture described himself as a hacker, but most shared the
sentiments of Richard M. Stallman. If a program or software
fix was good enough to solve your problems, it was good
enough to solve somebody else’s problems. Why not share it
out of a simple desire for good karma?

The fact that Xerox had been unwilling to share its source-
code files seemed a minor annoyance at first. In tracking down
a copy of the source-code files, Stallman says he didn’t even

bother contacting Xerox. “They had already given us the laser
printer,” Stallman says. “Why should I bug them for more?”

When the desired files failed to surface, however, Stallman
began to grow suspicious. The year before, Stallman had
experienced a blow up with a doctoral student at Carnegie
Mellon University. The student, Brian Reid, was the author of
a useful text-formatting program dubbed Scribe. One of the
first programs that gave a user the power to define fonts and
type styles when sending a document over a computer
network, the program was an early harbinger of HTML, the
lingua franca of the World Wide Web. In 1979, Reid made the
decision to sell Scribe to a Pittsburgh-area software company
called Unilogic. His graduate-student career ending, Reid says
he simply was looking for a way to unload the program on a
set of developers that would take pains to keep it from slipping
into the public domain. To sweeten the deal, Reid also agreed
to insert a set of time-dependent functions- “time bombs” in
software-programmer parlance-that deactivated freely copied
versions of the program after a 90-day expiration date. To
avoid deactivation, users paid the software company, which
then issued a code that defused the internal time-bomb feature.

For Reid, the deal was a win-win. Scribe didn’t fall into the
public domain, and Unilogic recouped on its investment. For
Stallman, it was a betrayal of the programmer ethos, pure and
simple. Instead of honoring the notion of share-and-share
alike, Reid had inserted a way for companies to compel
programmers to pay for information access.

As the weeks passed and his attempts to track down Xerox
laser-printer source code hit a brick wall, Stallman began to
sense a similar money-for-code scenario at work. Before
Stallman could do or say anything about it, however, good
news finally trickled in via the programmer grapevine. Word

had it that a scientist at the computer-science department at
Carnegie Mellon University had just departed a job at the
Xerox Palo Alto Research Center. Not only had the scientist
worked on the laser printer in question, but according to
rumor, he was still working on it as part of his research duties
at Carnegie Mellon.

Casting aside his initial suspicion, Stallman made a firm
resolution to seek out the person in question during his next
visit to the Carnegie Mellon campus.

He didn’t have to wait long. Carnegie Mellon also had a lab
specializing in artificial-intelligence research, and within a few
months, Stallman had a business-related reason to visit the
Carnegie Mellon campus. During that visit, he made sure to
stop by the computer-science department. Department
employees directed him to the office of the faculty member
leading the Xerox project. When Stallman reached the office,
he found the professor working there.

In true engineer-to-engineer fashion, the conversation was
cordial but blunt. After briefly introducing himself as a visitor
from MIT, Stallman requested a copy of the laser-printer
source code so that he could port it to the PDP-11. To his
surprise, the professor refused to grant his request.

“He told me that he had promised not to give me a copy,”
Stallman says.

Memory is a funny thing. Twenty years after the fact,
Stallman’s mental history tape is notoriously blank in places.
Not only does he not remember the motivating reason for the
trip or even the time of year during which he took it, he also
has no recollection of the professor or doctoral student on the
other end of the conversation. According to Reid, the person
most likely to have fielded Stallman’s request is Robert

Sproull, a former Xerox PARC researcher and current director
of Sun Laboratories, a research division of the computer-
technology conglomerate Sun Microsystems. During the
1970s, Sproull had been the primary developer of the laser-
printer software in question while at Xerox PARC. Around
1980, Sproull took a faculty research position at Carnegie
Mellon where he continued his laser-printer work amid other
projects.

“The code that Stallman was asking for was leading-edge
state-of-the-art code that Sproull had written in the year or so
before going to Carnegie Mellon,” recalls Reid. “I suspect that
Sproull had been at Carnegie Mellon less than a month before
this request came in.”

When asked directly about the request, however, Sproull
draws a blank. “I can’t make a factual comment,” writes
Sproull via email. “I have absolutely no recollection of the
incident.”

With both participants in the brief conversation struggling to
recall key details-including whether the conversation even
took place-it’s hard to gauge the bluntness of Sproull’s refusal,
at least as recalled by Stallman. In talking to audiences,
Stallman has made repeated reference to the incident, noting
that Sproull’s unwillingness to hand over the source code
stemmed from a nondisclosure agreement, a contractual
agreement between Sproull and the Xerox Corporation giving
Sproull, or any other signatory, access the software source
code in exchange for a promise of secrecy. Now a standard
item of business in the software industry, the nondisclosure
agreement, or NDA, was a novel development at the time, a
reflection of both the commercial value of the laser printer to
Xerox and the information needed to run it. “Xerox was at the
time trying to make a commercial product out of the laser

printer,” recalls Reid. “They would have been insane to give
away the source code.”

For Stallman, however, the NDA was something else
entirely. It was a refusal on the part of Xerox and Sproull, or
whomever the person was that turned down his source-code
request that day, to participate in a system that, until then, had
encouraged software programmers to regard programs as
communal resources. Like a peasant whose centuries-old
irrigation ditch had grown suddenly dry, Stallman had
followed the ditch to its source only to find a brand-spanking-
new hydroelectric dam bearing the Xerox logo.

For Stallman, the realization that Xerox had compelled a
fellow programmer to participate in this newfangled system of
compelled secrecy took a while to sink in. At first, all he could
focus on was the personal nature of the refusal. As a person
who felt awkward and out of sync in most face-to-face
encounters, Stallman’s attempt to drop in on a fellow
programmer unannounced had been intended as a
demonstration of neighborliness. Now that the request had
been refused, it felt like a major blunder. “I was so angry I
couldn’t think of a way to express it. So I just turned away and
walked out without another word,” Stallman recalls. “I might
have slammed the door. Who knows? All I remember is
wanting to get out of there.”

Twenty years after the fact, the anger still lingers, so much
so that Stallman has elevated the event into a major turning
point. Within the next few months, a series of events would
befall both Stallman and the AI Lab hacker community that
would make 30 seconds worth of tension in a remote Carnegie
Mellon office seem trivial by comparison. Nevertheless, when
it comes time to sort out the events that would transform
Stallman from a lone hacker, instinctively suspicious of

centralized authority, to a crusading activist applying
traditional notions of liberty, equality, and fraternity to the
world of software development, Stallman singles out the
Carnegie Mellon encounter for special attention.

“It encouraged me to think about something that I’d already
been thinking about,” says Stallman. “I already had an idea
that software should be shared, but I wasn’t sure how to think
about that. My thoughts weren’t clear and organized to the
point where I could express them in a concise fashion to the
rest of the world.”

Although previous events had raised Stallman’s ire, he says
it wasn’t until his Carnegie Mellon encounter that he realized
the events were beginning to intrude on a culture he had long
considered sacrosanct. As an elite programmer at one of the
world’s elite institutions, Stallman had been perfectly willing
to ignore the compromises and bargains of his fellow
programmers just so long as they didn’t interfere with his own
work. Until the arrival of the Xerox laser printer, Stallman had
been content to look down on the machines and programs
other computer users grimly tolerated. On the rare occasion
that such a program breached the AI Lab’s walls-when the lab
replaced its venerable Incompatible Time Sharing operating
system with a commercial variant, the TOPS 20, for example-
Stallman and his hacker colleagues had been free to rewrite,
reshape, and rename the software according to personal taste.

Now that the laser printer had insinuated itself within the AI
Lab’s network, however, something had changed. The
machine worked fine, barring the occasional paper jam, but the
ability to modify according to personal taste had disappeared.
From the viewpoint of the entire software industry, the printer
was a wake-up call. Software had become such a valuable
asset that companies no longer felt the need to publicize

source code, especially when publication meant giving
potential competitors a chance to duplicate something cheaply.
From Stallman’s viewpoint, the printer was a Trojan Horse.
After a decade of failure, privately owned software-future
hackers would use the term ” proprietary” software-had gained
a foothold inside the AI Lab through the sneakiest of methods.
It had come disguised as a gift.

That Xerox had offered some programmers access to
additional gifts in exchange for secrecy was also galling, but
Stallman takes pains to note that, if presented with such a quid
pro quo bargain at a younger age, he just might have taken the
Xerox Corporation up on its offer. The awkwardness of the
Carnegie Mellon encounter, however, had a firming effect on
Stallman’s own moral lassitude. Not only did it give him the
necessary anger to view all future entreaties with suspicion, it
also forced him to ask the uncomfortable question: what if a
fellow hacker dropped into Stallman’s office someday and it
suddenly became Stallman’s job to refuse the hacker’s request
for source code?

“It was my first encounter with a nondisclosure agreement,
and it immediately taught me that nondisclosure agreements
have victims,” says Stallman, firmly. “In this case I was the
victim. [My lab and I] were victims.”

It was a lesson Stallman would carry with him through the
tumultuous years of the 1980s, a decade during which many of
his MIT colleagues would depart the AI Lab and sign
nondisclosure agreements of their own. Because most
nondisclosure aggreements (NDAs) had expiration dates, few
hackers who did sign them saw little need for personal
introspection. Sooner or later, they reasoned, the software
would become public knowledge. In the meantime, promising
to keep the software secret during its earliest development

stages was all a part of the compromise deal that allowed
hackers to work on the best projects. For Stallman, however, it
was the first step down a slippery slope.

“When somebody invited me to betray all my colleagues in
that way, I remembered how angry I was when somebody else
had done that to me and my whole lab,” Stallman says. “So I
said, `Thank you very much for offering me this nice software
package, but I can’t accept it on the conditions that you’re
asking for, so I’m going to do without it.’”

As Stallman would quickly learn, refusing such requests
involved more than personal sacrifice. It involved segregating
himself from fellow hackers who, though sharing a similar
distaste for secrecy, tended to express that distaste in a more
morally flexible fashion. It wasn’t long before Stallman,
increasingly an outcast even within the AI Lab, began billing
himself as “the last true hacker,” isolating himself further and
further from a marketplace dominated by proprietary software.
Refusing another’s request for source code, Stallman decided,
was not only a betrayal of the scientific mission that had
nurtured software development since the end of World War II,
it was a violation of the Golden Rule, the baseline moral
dictate to do unto others as you would have them do unto you.

Hence the importance of the laser printer and the encounter
that resulted from it. Without it, Stallman says, his life might
have followed a more ordinary path, one balancing the riches
of a commercial programmer with the ultimate frustration of a
life spent writing invisible software code. There would have
been no sense of clarity, no urgency to address a problem
others weren’t addressing. Most importantly, there would have
been no righteous anger, an emotion that, as we soon shall see,
has propelled Stallman’s career as surely as any political
ideology or ethical belief.

“From that day forward, I decided this was something I
could never participate in,” says Stallman, alluding to the
practice of trading personal liberty for the sake of
convenience-Stallman’s description of the NDA bargain-as
well as the overall culture that encouraged such ethically
suspect deal-making in the first place. “I decided never to
make other people victims just like I had been a victim.”

2001: A Hacker’s Odyssey

The New York University computer-science department sits
inside Warren Weaver Hall, a fortress-like building located
two blocks east of Washington Square Park. Industrial-strength
air-conditioning vents create a surrounding moat of hot air,
discouraging loiterers and solicitors alike. Visitors who breach
the moat encounter another formidable barrier, a security
check-in counter immediately inside the building’s single
entryway.

Beyond the security checkpoint, the atmosphere relaxes
somewhat. Still, numerous signs scattered throughout the first
floor preach the dangers of unsecured doors and propped-open
fire exits. Taken as a whole, the signs offer a reminder: even in
the relatively tranquil confines of pre-September 11, 2001,
New York, one can never be too careful or too suspicious.

The signs offer an interesting thematic counterpoint to the
growing number of visitors gathering in the hall’s interior
atrium. A few look like NYU students. Most look like shaggy-
aired concert-goers milling outside a music hall in anticipation
of the main act. For one brief morning, the masses have taken
over Warren Weaver Hall, leaving the nearby security
attendant with nothing better to do but watch Ricki Lake on
TV and shrug her shoulders toward the nearby auditorium
whenever visitors ask about “the speech.”

Once inside the auditorium, a visitor finds the person who
has forced this temporary shutdown of building security
procedures. The person is Richard M. Stallman, founder of the
GNU Project, original president of the Free Software
Foundation, winner of the 1990 MacArthur Fellowship,
winner of the Association of Computing Machinery’s Grace
Murray Hopper Award (also in 1990), corecipient of the
Takeda Foundation’s 2001 Takeda Award, and former AI Lab
hacker. As announced over a host of hacker-related web sites,
including the GNU Project’s own http://www.gnu.org site,
Stallman is in Manhattan, his former hometown, to deliver a
much anticipated speech in rebuttal to the Microsoft
Corporation’s recent campaign against the GNU General
Public License.

The subject of Stallman’s speech is the history and future of
the free software movement. The location is significant. Less
than a month before, Microsoft senior vice president Craig
Mundie appeared at the nearby NYU Stern School of
Business, delivering a speech blasting the General Public
License, or GPL, a legal device originally conceived by
Stallman 16 years before. Built to counteract the growing
wave of software secrecy overtaking the computer industry-a
wave first noticed by Stallman during his 1980 troubles with
the Xerox laser printer-the GPL has evolved into a central tool
of the free software community. In simplest terms, the GPL
locks software programs into a form of communal ownership-
what today’s legal scholars now call the “digital commons”-
through the legal weight of copyright. Once locked, programs
remain unremovable. Derivative versions must carry the same
copyright protection-even derivative versions that bear only a
small snippet of the original source code. For this reason,
some within the software industry have taken to calling the

GPL a “viral” license, because it spreads itself to every
software program it touches. Actually, the GPL’s powers are
not quite that potent. According to section 10 of the GNU
General Public License, Version 2 (1991), the viral nature of
the license depends heavily on the Free Software Foundation’s
willingness to view a program as a derivative work, not to
mention the existing license the GPL would replace.

If you wish to incorporate parts of the Program into other
free programs whose distribution conditions are different,
write to the author to ask for permission. For software that is
copyrighted by the Free Software Foundation, write to the
Free Software Foundation; we sometimes make exceptions for
this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

“To compare something to a virus is very harsh,” says
Stallman. “A spider plant is a more accurate comparison; it
goes to another place if you actively take a cutting.”

For more information on the GNU General Public License,
visit [http://www.gnu.org/copyleft/gpl.html.]

In an information economy increasingly dependent on
software and increasingly beholden to software standards, the
GPL has become the proverbial “big stick.” Even companies
that once laughed it off as software socialism have come
around to recognize the benefits. Linux, the Unix-like kernel
developed by Finnish college student Linus Torvalds in 1991,
is licensed under the GPL, as are many of the world’s most
popular programming tools: GNU Emacs, the GNU Debugger,
the GNU C Compiler, etc. Together, these tools form the
components of a free software operating system developed,
nurtured, and owned by the worldwide hacker community.

Instead of viewing this community as a threat, high-tech
companies like IBM, Hewlett Packard, and Sun Microsystems
have come to rely upon it, selling software applications and
services built to ride atop the ever-growing free software
infrastructure.

They’ve also come to rely upon it as a strategic weapon in
the hacker community’s perennial war against Microsoft, the
Redmond, Washington-based company that, for better or
worse, has dominated the PC-software marketplace since the
late 1980s. As owner of the popular Windows operating
system, Microsoft stands to lose the most in an industry-wide
shift to the GPL license. Almost every line of source code in
the Windows colossus is protected by copyrights reaffirming
the private nature of the underlying source code or, at the very
least, reaffirming Microsoft’s legal ability to treat it as such.
From the Microsoft viewpoint, incorporating programs
protected by the “viral” GPL into the Windows colossus
would be the software equivalent of Superman downing a
bottle of Kryptonite pills. Rival companies could suddenly
copy, modify, and sell improved versions of Windows,
rendering the company’s indomitable position as the No. 1
provider of consumer-oriented software instantly vulnerable.
Hence the company’s growing concern over the GPL’s rate of
adoption. Hence the recent Mundie speech blasting the GPL
and the ” open source” approach to software development and
sales. And hence Stallman’s decision to deliver a public
rebuttal to that speech on the same campus here today.

20 years is a long time in the software industry. Consider
this: in 1980, when Richard Stallman was cursing the AI Lab’s
Xerox laser printer, Microsoft, the company modern hackers
view as the most powerful force in the worldwide software
industry, was still a privately held startup. IBM, the company

hackers used to regard as the most powerful force in the
worldwide software industry, had yet to to introduce its first
personal computer, thereby igniting the current low-cost PC
market. Many of the technologies we now take for granted-the
World Wide Web, satellite television, 32-bit video-game
consoles-didn’t even exist. The same goes for many of the
companies that now fill the upper echelons of the corporate
establishment, companies like AOL, Sun Microsystems,
Amazon.com, Compaq, and Dell. The list goes on and on.

The fact that the high-technology marketplace has come so
far in such little time is fuel for both sides of the GPL debate.
GPL-proponents point to the short lifespan of most computer
hardware platforms. Facing the risk of buying an obsolete
product, consumers tend to flock to companies with the best
long-term survival. As a result, the software marketplace has
become a winner-take-all arena.See Shubha Ghosh,
“Revealing the Microsoft Windows Source Code,”
Gigalaw.com (January, 2000).
http://www.gigalaw.com/articles/ghosh-2000-01-p1.html The
current, privately owned software environment, GPL-
proponents say, leads to monopoly abuse and stagnation.
Strong companies suck all the oxygen out of the marketplace
for rival competitors and innovative startups.

GPL-opponents argue just the opposite. Selling software is
just as risky, if not more risky, than buying software, they say.
Without the legal guarantees provided by private software
licenses, not to mention the economic prospects of a privately
owned “killer app” (i.e., a breakthrough technology that
launches an entirely new market),Killer apps don’t have to be
proprietary. Witness, of course, the legendary Mosaic browser,
a program whose copyright permits noncommercial
derivatives with certain restrictions. Still, I think the reader

gets the point: the software marketplace is like the lottery. The
bigger the potential payoff, the more people want to
participate. For a good summary of the killer-app
phenomenon, see Philip Ben-David, “Whatever Happened to
the `Killer App’?” e-Commerce News (December 7, 2000).
companies lose the incentive to participate. Once again, the
market stagnates and innovation declines. As Mundie himself
noted in his May 3 address on the same campus, the GPL’s
“viral” nature “poses a threat” to any company that relies on
the uniqueness of its software as a competitive asset. Added
Mundie: It also fundamentally undermines the independent
commercial software sector because it effectively makes it
impossible to distribute software on a basis where recipients
pay for the product rather than just the cost of distributionSee
Craig Mundie, “The Commercial Software Model,” senior
vice president, Microsoft Corp. Excerpted from an online
transcript of Mundie’s May 3,speech to the New York
University Stern School of Business.

http://www.ecommercetimes.com/perl/story/5893.html 001,

http://www.microsoft.com/presspass/exec/craig/05-
03sharedsource.asp
 The mutual success of GNU/ LinuxThe acronym GNU stands
for “GNU’s not Unix.”
In another
portion of the May 29, 2001, NYU speech, Stallman
summed up the acronym’s origin: We hackers always look
for a funny or naughty name for a program, because
naming a program is half the fun of writing the
program. We also had a tradition of recursive acronyms,
to say that the program that you’re writing is similar
to some existing program … I looked for a recursive
acronym for Something Is Not UNIX. And I tried all 26

letters and discovered that none of them was a word. I
decided to make it a contraction. That way I could have
a three-letter acronym, for Something’s Not UNIX. And I
tried letters, and I came across the word “GNU.” That
was it. Although a fan of puns, Stallman recommends
that software users pronounce the “g” at the beginning
of the acronym (i.e., “gah-new”). Not only does this
avoid confusion with the word “gnu,” the name of the
African antelope, Connochaetes gnou , it also avoids
confusion with the adjective “new.” “We’ve been working
on it for 17 years now, so it is not exactly new any
more,” Stallman says. Source: author notes and online
transcript of “Free Software: Freedom and Cooperation,”
Richard Stallman’s May 29, 2001, speech at New York
University.

http://www.gnu.org/events/rms-nyu-2001-transcript.txt
, the amalgamated operating system built around the
GPL-protected Linux kernel, and Windows over the last
10 years reveals the wisdom of both perspectives.
Nevertheless, the battle for momentum is an important
one in the software industry. Even powerful vendors
such as Microsoft rely on the support of third-party
software developers whose tools, programs, and computer
games make an underlying software platform such as
Windows more attractive to the mainstream consumer.
Citing the rapid evolution of the technology
marketplace over the last 20 years, not to mention his
own company’s admirable track record during that
period, Mundie advised listeners to not get too carried
away by the free software movement’s recent momentum:
Two decades of experience have shown that an economic
model that protects intellectual property and a

business model that recoups research and development
costs can create impressive economic benefits and
distribute them very broadly. Such admonitions serve as
the backdrop for Stallman’s speech today. Less than a
month after their utterance, Stallman stands with his
back to one of the chalk boards at the front of the
room, edgy to begin.

If the last two decades have brought dramatic changes to the
software marketplace, they have brought even more dramatic
changes to Stallman himself. Gone is the skinny, clean-shaven
hacker who once spent his entire days communing with his
beloved PDP-10. In his place stands a heavy-set middle-aged
man with long hair and rabbinical beard, a man who now
spends the bulk of his time writing and answering email,
haranguing fellow programmers, and giving speeches like the
one today. Dressed in an aqua-colored T-shirt and brown
polyester pants, Stallman looks like a desert hermit who just
stepped out of a Salvation Army dressing room.

The crowd is filled with visitors who share Stallman’s
fashion and grooming tastes. Many come bearing laptop
computers and cellular modems, all the better to record and
transmit Stallman’s words to a waiting Internet audience. The
gender ratio is roughly 15 males to 1 female, and 1 of the 7 or
8 females in the room comes in bearing a stuffed penguin, the
official Linux mascot, while another carries a stuffed teddy
bear.

<Graphic file:/home/craigm/books/free_0201.png>

Richard Stallman, circa 2000. “I decided I would develop a
free software operating system or die trying . . of old age of
course.” Photo courtesy of http://www.stallman.org.

Agitated, Stallman leaves his post at the front of the room
and takes a seat in a front-row chair, tapping a few commands
into an already-opened laptop. For the next 10 minutes
Stallman is oblivious to the growing number of students,
professors, and fans circulating in front of him at the foot of
the auditorium stage.

Before the speech can begin, the baroque rituals of
academic formality must be observed. Stallman’s appearance
merits not one but two introductions. Mike Uretsky, codirector
of the Stern School’s Center for Advanced Technology,
provides the first.

“The role of a university is to foster debate and to have
interesting discussions,” Uretsky says. “This particular
presentation, this seminar falls right into that mold. I find the
discussion of open source particularly interesting.”

Before Uretsky can get another sentence out, Stallman is on
his feet waving him down like a stranded motorist.

“I do free software,” Stallman says to rising laughter.
“Open source is a different movement.”

The laughter gives way to applause. The room is stocked
with Stallman partisans, people who know of his reputation for
verbal exactitude, not to mention his much publicized 1998
falling out with the open source software proponents. Most
have come to anticipate such outbursts the same way radio
fans once waited for Jack Benny’s trademark, “Now cut that
out!” phrase during each radio program.

Uretsky hastily finishes his introduction and cedes the stage
to Edmond Schonberg, a professor in the NYU computer-
science department. As a computer programmer and GNU
Project contributor, Schonberg knows which linguistic land

mines to avoid. He deftly summarizes Stallman’s career from
the perspective of a modern-day programmer.

“Richard is the perfect example of somebody who, by
acting locally, started thinking globally [about] problems
concerning the unavailability of source code,” says Schonberg.
“He has developed a coherent philosophy that has forced all of
us to reexamine our ideas of how software is produced, of
what intellectual property means, and of what the software
community actually represents.”

Schonberg welcomes Stallman to more applause. Stallman
takes a moment to shut off his laptop, rises out of his chair,
and takes the stage.

At first, Stallman’s address seems more Catskills comedy
routine than political speech. “I’d like to thank Microsoft for
providing me the opportunity to be on this platform,” Stallman
wisecracks. “For the past few weeks, I have felt like an author
whose book was fortuitously banned somewhere.”

For the uninitiated, Stallman dives into a quick free
software warm-up analogy. He likens a software program to a
cooking recipe. Both provide useful step-by-step instructions
on how to complete a desired task and can be easily modified
if a user has special desires or circumstances. “You don’t have
to follow a recipe exactly,” Stallman notes. “You can leave out
some ingredients. Add some mushrooms, ‘cause you like
mushrooms. Put in less salt because your doctor said you
should cut down on salt-whatever.”

Most importantly, Stallman says, software programs and
recipes are both easy to share. In giving a recipe to a dinner
guest, a cook loses little more than time and the cost of the
paper the recipe was written on. Software programs require
even less, usually a few mouse-clicks and a modicum of

electricity. In both instances, however, the person giving the
information gains two things: increased friendship and the
ability to borrow interesting recipes in return.

“Imagine what it would be like if recipes were packaged
inside black boxes,” Stallman says, shifting gears. “You
couldn’t see what ingredients they’re using, let alone change
them, and imagine if you made a copy for a friend. They
would call you a pirate and try to put you in prison for years.
That world would create tremendous outrage from all the
people who are used to sharing recipes. But that is exactly
what the world of proprietary software is like. A world in
which common decency towards other people is prohibited or
prevented.”

With this introductory analogy out of the way, Stallman
launches into a retelling of the Xerox laser-printer episode.
Like the recipe analogy, the laser-printer story is a useful
rhetorical device. With its parable-like structure, it dramatizes
just how quickly things can change in the software world.
Drawing listeners back to an era before Amazon.com one-
click shopping, Microsoft Windows, and Oracle databases, it
asks the listener to examine the notion of software ownership
free of its current corporate logos.

Stallman delivers the story with all the polish and practice
of a local district attorney conducting a closing argument.
When he gets to the part about the Carnegie Mellon professor
refusing to lend him a copy of the printer source code,
Stallman pauses.

“He had betrayed us,” Stallman says. “But he didn’t just do
it to us. Chances are he did it to you.”

On the word “you,” Stallman points his index finger
accusingly at an unsuspecting member of the audience. The

targeted audience member’s eyebrows flinch slightly, but
Stallman’s own eyes have moved on. Slowly and deliberately,
Stallman picks out a second listener to nervous titters from the
crowd. “And I think, mostly likely, he did it to you, too,” he
says, pointing at an audience member three rows behind the
first.

By the time Stallman has a third audience member picked
out, the titters have given away to general laughter. The
gesture seems a bit staged, because it is. Still, when it comes
time to wrap up the Xerox laser-printer story, Stallman does so
with a showman’s flourish. “He probably did it to most of the
people here in this room-except a few, maybe, who weren’t
born yet in 1980,” Stallman says, drawing more laughs.
“[That’s] because he had promised to refuse to cooperate with
just about the entire population of the planet Earth.”

Stallman lets the comment sink in for a half-beat. “He had
signed a nondisclosure agreement,” Stallman adds.

Richard Matthew Stallman’s rise from frustrated academic
to political leader over the last 20 years speaks to many things.
It speaks to Stallman’s stubborn nature and prodigious will. It
speaks to the clearly articulated vision and values of the free
software movement Stallman helped build. It speaks to the
high-quality software programs Stallman has built, programs
that have cemented Stallman’s reputation as a programming
legend. It speaks to the growing momentum of the GPL, a
legal innovation that many Stallman observers see as his most
momentous accomplishment.

Most importantly, it speaks to the changing nature of
political power in a world increasingly beholden to computer
technology and the software programs that power that
technology.

Maybe that’s why, even at a time when most high-
technology stars are on the wane, Stallman’s star has grown.
Since launching the GNU Project in 1984,5 Stallman has been
at turns ignored, satirized, vilified, and attacked-both from
within and without the free software movement. Through it all,
the GNU Project has managed to meet its milestones, albeit
with a few notorious delays, and stay relevant in a software
marketplace several orders of magnitude more complex than
the one it entered 18 years ago. So too has the free software
ideology, an ideology meticulously groomed by Stallman
himself.

To understand the reasons behind this currency, it helps to
examine Richard Stallman both in his own words and in the
words of the people who have collaborated and battled with
him along the way. The Richard Stallman character sketch is
not a complicated one. If any person exemplifies the old adage
“what you see is what you get,” it’s Stallman.

“I think if you want to understand Richard Stallman the
human being, you really need to see all of the parts as a
consistent whole,” advises Eben Moglen, legal counsel to the
Free Software Foundation and professor of law at Columbia
University Law School. “All those personal eccentricities that
lots of people see as obstacles to getting to know Stallman
really are Stallman: Richard’s strong sense of personal
frustration, his enormous sense of principled ethical
commitment, his inability to compromise, especially on issues
he considers fundamental. These are all the very reasons
Richard did what he did when he did.”

Explaining how a journey that started with a laser printer
would eventually lead to a sparring match with the world’s
richest corporation is no easy task. It requires a thoughtful
examination of the forces that have made software ownership

so important in today’s society. It also requires a thoughtful
examination of a man who, like many political leaders before
him, understands the malleability of human memory. It
requires an ability to interpret the myths and politically laden
code words that have built up around Stallman over time.
Finally, it requires an understanding of Stallman’s genius as a
programmer and his failures and successes in translating that
genius to other pursuits.

When it comes to offering his own summary of the journey,
Stallman acknowledges the fusion of personality and principle
observed by Moglen. “Stubbornness is my strong suit,” he
says. “Most people who attempt to do anything of any great
difficulty eventually get discouraged and give up. I never gave
up.”

He also credits blind chance. Had it not been for that run-in
over the Xerox laser printer, had it not been for the personal
and political conflicts that closed out his career as an MIT
employee, had it not been for a half dozen other timely factors,
Stallman finds it very easy to picture his life following a
different career path. That being said, Stallman gives thanks to
the forces and circumstances that put him in the position to
make a difference.

“I had just the right skills,” says Stallman, summing up his
decision for launching the GNU Project to the audience.
“Nobody was there but me, so I felt like, `I’m elected. I have
to work on this. If not me , who?’” Endnotes

1. Actually, the GPL’s powers are not quite that potent.
According to section 10 of the GNU General Public License,
Version 2 (1991), the viral nature of the license depends
heavily on the Free Software Foundation’s willingness to view

a program as a derivative work, not to mention the existing
license the GPL would replace.

If you wish to incorporate parts of the Program into other
free programs whose distribution conditions are different,
write to the author to ask for permission. For software that is
copyrighted by the Free Software Foundation, write to the
Free Software Foundation; we sometimes make exceptions for
this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

“To compare something to a virus is very harsh,” says
Stallman. “A spider plant is a more accurate comparison; it
goes to another place if you actively take a cutting.”

For more information on the GNU General Public License,
visit

[http://www.gnu.org/copyleft/gpl.html.]

A Portrait of the Hacker as a Young Man

Richard Stallman’s mother, Alice Lippman, still remembers
the moment she realized her son had a special gift.

“I think it was when he was eight,” Lippman recalls.

The year was 1961, and Lippman, a recently divorced single
mother, was wiling away a weekend afternoon within the
family’s tiny one-bedroom apartment on Manhattan’s Upper
West Side. Leafing through a copy of Scientific American,
Lippman came upon her favorite section, the Martin Gardner-
authored column titled “Mathematical Games.” A substitute
art teacher, Lippman always enjoyed Gardner’s column for the
brain-teasers it provided. With her son already ensconced in a
book on the nearby sofa, Lippman decided to take a crack at
solving the week’s feature puzzle.

“I wasn’t the best person when it came to solving the
puzzles,” she admits. “But as an artist, I found they really
helped me work through conceptual barriers.”

Lippman says her attempt to solve the puzzle met an
immediate brick wall. About to throw the magazine down in
disgust, Lippman was surprised by a gentle tug on her shirt
sleeve.

“It was Richard,” she recalls, “He wanted to know if I
needed any help.”

Looking back and forth, between the puzzle and her son,
Lippman says she initially regarded the offer with skepticism.
“I asked Richard if he’d read the magazine,” she says. “He
told me that, yes, he had and what’s more he’d already solved
the puzzle. The next thing I know, he starts explaining to me
how to solve it.”

Hearing the logic of her son’s approach, Lippman’s
skepticism quickly gave way to incredulity. “I mean, I always
knew he was a bright boy,” she says, “but this was the first
time I’d seen anything that suggested how advanced he really
was.”

Thirty years after the fact, Lippman punctuates the memory
with a laugh. “To tell you the truth, I don’t think I ever figured
out how to solve that puzzle,” she says. “All I remember is
being amazed he knew the answer.”

Seated at the dining-room table of her second Manhattan
apartment-the same spacious three-bedroom complex she and
her son moved to following her 1967 marriage to Maurice
Lippman, now deceased-Alice Lippman exudes a Jewish
mother’s mixture of pride and bemusement when recalling her
son’s early years. The nearby dining-room credenza offers an
eight-by-ten photo of Stallman glowering in full beard and

doctoral robes. The image dwarfs accompanying photos of
Lippman’s nieces and nephews, but before a visitor can make
too much of it, Lippman makes sure to balance its prominent
placement with an ironic wisecrack.

“Richard insisted I have it after he received his honorary
doctorate at the University of Glasgow,” says Lippman. “He
said to me, `Guess what, mom? It’s the first graduation I ever
attended.‘“1

Such comments reflect the sense of humor that comes with
raising a child prodigy. Make no mistake, for every story
Lippman hears and reads about her son’s stubbornness and
unusual behavior, she can deliver at least a dozen in return.

“He used to be so conservative,” she says, throwing up her
hands in mock exasperation. “We used to have the worst
arguments right here at this table. I was part of the first group
of public city school teachers that struck to form a union, and
Richard was very angry with me. He saw unions as corrupt.
He was also very opposed to social security. He thought
people could make much more money investing it on their
own. Who knew that within 10 years he would become so
idealistic? All I remember is his stepsister coming to me and
saying, `What is he going to be when he grows up? A
fascist?’”

As a single parent for nearly a decade-she and Richard’s
father, Daniel Stallman, were married in 1948, divorced in
1958, and split custody of their son afterwards-Lippman can
attest to her son’s aversion to authority. She can also attest to
her son’s lust for knowledge. It was during the times when the
two forces intertwined, Lippman says, that she and her son
experienced their biggest battles.

“It was like he never wanted to eat,” says Lippman,
recalling the behavior pattern that set in around age eight and
didn’t let up until her son’s high-school graduation in 1970.
“I’d call him for dinner, and he’d never hear me. I’d have to
call him 9 or 10 times just to get his attention. He was totally
immersed.”

Stallman, for his part, remembers things in a similar
fashion, albeit with a political twist.

“I enjoyed reading,” he says. “If I wanted to read, and my
mother told me to go to the kitchen and eat or go to sleep, I
wasn’t going to listen. I saw no reason why I couldn’t read. No
reason why she should be able to tell me what to do, period.
Essentially, what I had read about, ideas such as democracy
and individual freedom, I applied to myself. I didn’t see any
reason to exclude children from these principles.”

The belief in individual freedom over arbitrary authority
extended to school as well. Two years ahead of his classmates
by age 11, Stallman endured all the usual frustrations of a
gifted public-school student. It wasn’t long after the puzzle
incident that his mother attended the first in what would
become a long string of parent-teacher conferences.

“He absolutely refused to write papers,” says Lippman,
recalling an early controversy. “I think the last paper he wrote
before his senior year in high school was an essay on the
history of the number system in the west for a fourth-grade
teacher.”

Gifted in anything that required analytical thinking,
Stallman gravitated toward math and science at the expense of
his other studies. What some teachers saw as single-
mindedness, however, Lippman saw as impatience. Math and
science offered simply too much opportunity to learn,

especially in comparison to subjects and pursuits for which her
son seemed less naturally inclined. Around age 10 or 11, when
the boys in Stallman’s class began playing a regular game of
touch football, she remembers her son coming home in a rage.
“He wanted to play so badly, but he just didn’t have the
coordination skills,” Lippman recalls. “It made him so angry.”

The anger eventually drove her son to focus on math and
science all the more. Even in the realm of science, however,
her son’s impatience could be problematic. Poring through
calculus textbooks by age seven, Stallman saw little need to
dumb down his discourse for adults. Sometime, during his
middle-school years, Lippman hired a student from nearby
Columbia University to play big brother to her son. The
student left the family’s apartment after the first session and
never came back. “I think what Richard was talking about
went over his head,” Lippman speculates.

Another favorite maternal anecdote dates back to the early
1960s, shortly after the puzzle incident. Around age seven,
two years after the divorce and relocation from Queens,
Richard took up the hobby of launching model rockets in
nearby Riverside Drive Park. What started as aimless fun soon
took on an earnest edge as her son began recording the data
from each launch. Like the interest in mathematical games, the
pursuit drew little attention until one day, just before a major
NASA launch, Lippman checked in on her son to see if he
wanted to watch.

“He was fuming,” Lippman says. “All he could say to me
was, `But I’m not published yet.’ Apparently he had
something that he really wanted to show NASA.”

Such anecdotes offer early evidence of the intensity that
would become Stallman’s chief trademark throughout life.

When other kids came to the table, Stallman stayed in his
room and read. When other kids played Johnny Unitas,
Stallman played Werner von Braun. “I was weird,” Stallman
says, summing up his early years succinctly in a 1999
interview. “After a certain age, the only friends I had were
teachers.“See Michael Gross, “Richard Stallman: High School
Misfit, Symbol of Free Software, MacArthur-certified Genius”
(1999). This interview is one of the most candid Stallman
interviews on the record. I recommend it highly.

http://www.mgross.com/interviews/stallman1.html

Although it meant courting more run-ins at school, Lippman
decided to indulge her son’s passion. By age 12, Richard was
attending science camps during the summer and private school
during the school year. When a teacher recommended her son
enroll in the Columbia Science Honors Program, a post-
Sputnik program designed for gifted middle- and high-school
students in New York City, Stallman added to his
extracurriculars and was soon commuting uptown to the
Columbia University campus on Saturdays.

Dan Chess, a fellow classmate in the Columbia Science
Honors Program, recalls Richard Stallman seeming a bit weird
even among the students who shared a similar lust for math
and science. “We were all geeks and nerds, but he was
unusually poorly adjusted,” recalls Chess, now a mathematics
professor at Hunter College. “He was also smart as shit. I’ve
known a lot of smart people, but I think he was the smartest
person I’ve ever known.”

Seth Breidbart, a fellow Columbia Science Honors Program
alumnus, offers bolstering testimony. A computer programmer
who has kept in touch with Stallman thanks to a shared
passion for science fiction and science-fiction conventions, he

recalls the 15-year-old, buzz-cut-wearing Stallman as “scary,”
especially to a fellow 15-year-old.

“It’s hard to describe,” Breidbart says. “It wasn’t like he was
unapproachable. He was just very intense. [He was] very
knowledgeable but also very hardheaded in some ways.”

Such descriptions give rise to speculation: are judgment-
laden adjectives like “intense” and “hardheaded” simply a way
to describe traits that today might be categorized under
juvenile behavioral disorder? A December, 2001, Wired
magazine article titled “The Geek Syndrome” paints the
portrait of several scientifically gifted children diagnosed with
high-functioning autism or Asperger Syndrome. In many
ways, the parental recollections recorded in the Wired article
are eerily similar to the ones offered by Lippman. Even
Stallman has indulged in psychiatric revisionism from time to
time. During a 2000 profile for the Toronto Star, Stallman
described himself to an interviewer as “borderline
autistic,“See Judy Steed, Toronto Star, BUSINESS, (October
9, 2000): C03. His vision of free software and social
cooperation stands in stark contrast to the isolated nature of his
private life. A Glenn Gould-like eccentric, the Canadian
pianist was similarly brilliant, articulate, and lonely. Stallman
considers himself afflicted, to some degree, by autism: a
condition that, he says, makes it difficult for him to interact
with people. a description that goes a long way toward
explaining a lifelong tendency toward social and emotional
isolation and the equally lifelong effort to overcome it.

Such speculation benefits from the fast and loose nature of
most so-called ” behavioral disorders” nowadays, of course.
As Steve Silberman, author of ” The Geek Syndrome,” notes,
American psychiatrists have only recently come to accept
Asperger Syndrome as a valid umbrella term covering a wide

set of behavioral traits. The traits range from poor motor skills
and poor socialization to high intelligence and an almost
obsessive affinity for numbers, computers, and ordered
systems.See Steve Silberman, “The Geek Syndrome,” Wired
(December, 2001). Reflecting on the broad nature of this
umbrella, Stallman says its possible that, if born 40 years later,
he might have merited just such a diagnosis. Then again, so
would many of his computer-world colleagues.

“It’s possible I could have had something like that,” he says.
“On the other hand, one of the aspects of that syndrome is
difficulty following rhythms. I can dance. In fact, I love
following the most complicated rhythms. It’s not clear cut
enough to know.”

Chess, for one, rejects such attempts at back-diagnosis. “I
never thought of him [as] having that sort of thing,” he says.
“He was just very unsocialized, but then, we all were.”

Lippman, on the other hand, entertains the possibility. She
recalls a few stories from her son’s infancy, however, that
provide fodder for speculation. A prominent symptom of
autism is an oversensitivity to noises and colors, and Lippman
recalls two anecdotes that stand out in this regard. “When
Richard was an infant, we’d take him to the beach,” she says.
“He would start screaming two or three blocks before we
reached the surf. It wasn’t until the third time that we figured
out what was going on: the sound of the surf was hurting his
ears.” She also recalls a similar screaming reaction in relation
to color: “My mother had bright red hair, and every time she’d
stoop down to pick him up, he’d let out a wail.”

In recent years, Lippman says she has taken to reading
books about autism and believes that such episodes were more
than coincidental. “I do feel that Richard had some of the

qualities of an autistic child,” she says. “I regret that so little
was known about autism back then.”

Over time, however, Lippman says her son learned to
adjust. By age seven, she says, her son had become fond of
standing at the front window of subway trains, mapping out
and memorizing the labyrinthian system of railroad tracks
underneath the city. It was a hobby that relied on an ability to
accommodate the loud noises that accompanied each train
ride. “Only the initial noise seemed to bother him,” says
Lippman. “It was as if he got shocked by the sound but his
nerves learned how to make the adjustment.”

For the most part, Lippman recalls her son exhibiting the
excitement, energy, and social skills of any normal boy. It
wasn’t until after a series of traumatic events battered the
Stallman household, she says, that her son became introverted
and emotionally distant.

The first traumatic event was the divorce of Alice and
Daniel Stallman, Richard’s father. Although Lippman says
both she and her ex-husband tried to prepare their son for the
blow, she says the blow was devastating nonetheless. “He sort
of didn’t pay attention when we first told him what was
happening,” Lippman recalls. “But the reality smacked him in
the face when he and I moved into a new apartment. The first
thing he said was, `Where’s Dad’s furniture?’”

For the next decade, Stallman would spend his weekdays at
his mother’s apartment in Manhattan and his weekends at his
father’s home in Queens. The shuttling back and forth gave
him a chance to study a pair of contrasting parenting styles
that, to this day, leaves Stallman firmly opposed to the idea of
raising children himself. Speaking about his father, a World
War II vet who passed away in early 2001, Stallman balances

respect with anger. On one hand, there is the man whose moral
commitment led him to learn French just so he could be more
helpful to Allies when they’d finally come. On the other hand,
there was the parent who always knew how to craft a put-
down for cruel effect.Regrettably, I did not get a chance to
interview Daniel Stallman for this book. During the early
research for this book, Stallman informed me that his father
suffered from Alzheimer’s. When I resumed research in late
2001, I learned, sadly, that Daniel Stallman had died earlier in
the year.

“My father had a horrible temper,” Stallman says. “He
never screamed, but he always found a way to criticize you in
a cold, designed-to-crush way.”

As for life in his mother’s apartment, Stallman is less
equivocal. “That was war,” he says. “I used to say in my
misery, `I want to go home,’ meaning to the nonexistent place
that I’ll never have.”

For the first few years after the divorce, Stallman found the
tranquility that eluded him in the home of his paternal
grandparents. Then, around age 10 his grandparents passed
away in short succession. For Stallman, the loss was
devastating. “I used to go and visit and feel I was in a loving,
gentle environment,” Stallman recalls. “It was the only place I
ever found one, until I went away to college.”

Lippman lists the death of Richard’s paternal grandparents
as the second traumatic event. “It really upset him,” she says.
He was very close to both his grandparents. Before they died,
he was very outgoing, almost a leader-of-the-pack type with
the other kids. After they died, he became much more
emotionally withdrawn.”

From Stallman’s perspective, the emotional withdrawal was
merely an attempt to deal with the agony of adolescence.
Labeling his teenage years a “pure horror,” Stallman says he
often felt like a deaf person amid a crowd of chattering music
listeners.

“I often had the feeling that I couldn’t understand what
other people were saying,” says Stallman, recalling the
emotional bubble that insulated him from the rest of the
adolescent and adult world. “I could understand the words, but
something was going on underneath the conversations that I
didn’t understand. I couldn’t understand why people were
interested in the things other people said.”

For all the agony it produced, adolescence would have a
encouraging effect on Stallman’s sense of individuality. At a
time when most of his classmates were growing their hair out,
Stallman preferred to keep his short. At a time when the whole
teenage world was listening to rock and roll, Stallman
preferred classical music. A devoted fan of science fiction,
Mad magazine, and late-night TV, Stallman cultivated a
distinctly off-the-wall personality that fed off the
incomprehension of parents and peers alike.

“Oh, the puns,” says Lippman, still exasperated by the
memory of her son’s teenage personality. “There wasn’t a
thing you could say at the dinner table that he couldn’t throw
back at you as a pun.”

Outside the home, Stallman saved the jokes for the adults
who tended to indulge his gifted nature. One of the first was a
summer-camp counselor who handed Stallman a print-out
manual for the IBM 7094 computer during his 12th year. To a
preteenager fascinated with numbers and science, the gift was
a godsend.Stallman, an atheist, would probably quibble with

this description. Suffice it to say, it was something Stallman
welcomed. See previous note 1: “As soon as I heard about
computers, I wanted to see one and play with one.” By the end
of summer, Stallman was writing out paper programs
according to the 7094’s internal specifications, anxiously
anticipating getting a chance to try them out on a real machine.

With the first personal computer still a decade away,
Stallman would be forced to wait a few years before getting
access to his first computer. His first chance finally came
during his junior year of high school. Hired on at the IBM
New York Scientific Center, a now-defunct research facility in
downtown Manhattan, Stallman spent the summer after high-
school graduation writing his first program, a pre-processor for
the 7094 written in the programming language PL/I. “I first
wrote it in PL/I, then started over in assembler language when
the PL/I program was too big to fit in the computer,” he
recalls.

After that job at the IBM Scientific Center, Stallman had
held a laboratory-assistant position in the biology department
at Rockefeller University. Although he was already moving
toward a career in math or physics, Stallman’s analytical mind
impressed the lab director enough that a few years after
Stallman departed for college, Lippman received an
unexpected phone call. “It was the professor at Rockefeller,”
Lippman says. “He wanted to know how Richard was doing.
He was surprised to learn that he was working in computers.
He’d always thought Richard had a great future ahead of him
as a biologist.”

Stallman’s analytical skills impressed faculty members at
Columbia as well, even when Stallman himself became a
target of their ire. “Typically once or twice an hour [Stallman]
would catch some mistake in the lecture,” says Breidbart.

“And he was not shy about letting the professors know it
immediately. It got him a lot of respect but not much
popularity.”

Hearing Breidbart’s anecdote retold elicits a wry smile from
Stallman. “I may have been a bit of a jerk sometimes,” he
admits. “But I found kindred spirits among the teachers,
because they, too, liked to learn. Kids, for the most part,
didn’t. At least not in the same way.”

Hanging out with the advanced kids on Saturday
nevertheless encouraged Stallman to think more about the
merits of increased socialization. With college fast
approaching, Stallman, like many in his Columbia Science
Honors Program, had narrowed his list of desired schools
down to two choices: Harvard and MIT. Hearing of her son’s
desire to move on to the Ivy League, Lippman became
concerned. As a 15-year-old high-school junior, Stallman was
still having run-ins with teachers and administrators. Only the
year before, he had pulled straight A’s in American History,
Chemistry, French, and Algebra, but a glaring F in English
reflected the ongoing boycott of writing assignments. Such
miscues might draw a knowing chuckle at MIT, but at
Harvard, they were a red flag.

During her son’s junior year, Lippman says she scheduled
an appointment with a therapist. The therapist expressed
instant concern over Stallman’s unwillingness to write papers
and his run-ins with teachers. Her son certainly had the
intellectual wherewithal to succeed at Harvard, but did he have
the patience to sit through college classes that required a term
paper? The therapist suggested a trial run. If Stallman could
make it through a full year in New York City public schools,
including an English class that required term papers, he could
probably make it at Harvard. Following the completion of his

junior year, Stallman promptly enrolled in summer school at
Louis D. Brandeis High School, a public school located on
84th Street, and began making up the mandatory art classes he
had shunned earlier in his high-school career.

By fall, Stallman was back within the mainstream
population of New York City high-school students. It wasn’t
easy sitting through classes that seemed remedial in
comparison with his Saturday studies at Columbia, but
Lippman recalls proudly her son’s ability to toe the line.

“He was forced to kowtow to a certain degree, but he did
it,” Lippman says. “I only got called in once, which was a bit
of a miracle. It was the calculus teacher complaining that
Richard was interrupting his lesson. I asked how he was
interrupting. He said Richard was always accusing the teacher
of using a false proof. I said, `Well, is he right?’ The teacher
said, `Yeah, but I can’t tell that to the class. They wouldn’t
understand.’”

By the end of his first semester at Brandeis, things were
falling into place. A 96 in English wiped away much of the
stigma of the 60 earned 2 years before. For good measure,
Stallman backed it up with top marks in American History,
Advanced Placement Calculus, and Microbiology. The
crowning touch was a perfect 100 in Physics. Though still a
social outcast, Stallman finished his 11 months at Brandeis as
the fourth-ranked student in a class of 789.

<Graphic file:/home/craigm/books/free_0306.png>

Stallman’s senior-year transcript at Louis D. Brandeis H.S.,
November, 1969. Note turnaround in English class
performance. “He was forced to kowtow to a certain degree,”
says his mother, “but he did it.”

Outside the classroom, Stallman pursued his studies with
even more diligence, rushing off to fulfill his laboratory-
assistant duties at Rockefeller University during the week and
dodging the Vietnam protesters on his way to Saturday school
at Columbia. It was there, while the rest of the Science Honors
Program students sat around discussing their college choices,
that Stallman finally took a moment to participate in the
preclass bull session.

Recalls Breidbart, “Most of the students were going to
Harvard and MIT, of course, but you had a few going to other
Ivy League schools. As the conversation circled the room, it
became apparent that Richard hadn’t said anything yet. I don’t
know who it was, but somebody got up the courage to ask him
what he planned to do.”

Thirty years later, Breidbart remembers the moment clearly.
As soon as Stallman broke the news that he, too, would be
attending Harvard University in the fall, an awkward silence
filled the room. Almost as if on cue, the corners of Stallman’s
mouth slowly turned upward into a self-satisfied smile.

Says Breidbart, “It was his silent way of saying,
`That’s right. You haven’t got rid of me yet.’”

Impeach God

Although their relationship was fraught with tension,
Richard Stallman would inherit one noteworthy trait from his
mother: a passion for progressive politics.

It was an inherited trait that would take several decades to
emerge, however. For the first few years of his life, Stallman
lived in what he now admits was a “political vacuum.“See
Michael Gross, “Richard Stallman: High School Misfit,
Symbol of Free Software, MacArthur-certified Genius”
(1999). Like most Americans during the Eisenhower age, the

Stallman family spent the 50s trying to recapture the normalcy
lost during the wartime years of the 1940s.

“Richard’s father and I were Democrats but happy enough
to leave it at that,” says Lippman, recalling the family’s years
in Queens. “We didn’t get involved much in local or national
politics.”

That all began to change, however, in the late 1950s when
Alice divorced Daniel Stallman. The move back to Manhattan
represented more than a change of address; it represented a
new, independent identity and a jarring loss of tranquility.

“I think my first taste of political activism came when I
went to the Queens public library and discovered there was
only a single book on divorce in the whole library,” recalls
Lippman. “It was very controlled by the Catholic church, at
least in Elmhurst, where we lived. I think that was the first
inkling I had of the forces that quietly control our lives.”

Returning to her childhood neighborhood, Manhattan’s
Upper West Side, Lippman was shocked by the changes that
had taken place since her departure to Hunter College a decade
and a half before. The skyrocketing demand for postwar
housing had turned the neighborhood into a political
battleground. On one side stood the pro-development city-hall
politicians and businessmen hoping to rebuild many of the
neighborhood’s blocks to accommodate the growing number
of white-collar workers moving into the city. On the other side
stood the poor Irish and Puerto Rican tenants who had found
an affordable haven in the neighborhood.

At first, Lippman didn’t know which side to choose. As a
new resident, she felt the need for new housing. As a single
mother with minimal income, however, she shared the poorer
tenants’ concern over the growing number of development

projects catering mainly to wealthy residents. Indignant,
Lippman began looking for ways to combat the political
machine that was attempting to turn her neighborhood into a
clone of the Upper East Side.

Lippman says her first visit to the local Democratic party
headquarters came in 1958. Looking for a day-care center to
take care of her son while she worked, she had been appalled
by the conditions encountered at one of the city-owned centers
that catered to low-income residents. “All I remember is the
stench of rotten milk, the dark hallways, the paucity of
supplies. I had been a teacher in private nursery schools. The
contrast was so great. We took one look at that room and left.
That stirred me up.”

The visit to the party headquarters proved disappointing,
however. Describing it as “the proverbial smoke-filled room,”
Lippman says she became aware for the first time that
corruption within the party might actually be the reason behind
the city’s thinly disguised hostility toward poor residents.
Instead of going back to the headquarters, Lippman decided to
join up with one of the many clubs aimed at reforming the
Democratic party and ousting the last vestiges of the Tammany
Hall machine. Dubbed the Woodrow Wilson/FDR Reform
Democratic Club, Lippman and her club began showing up at
planning and city-council meetings, demanding a greater say.

“Our primary goal was to fight Tammany Hall, Carmine
DeSapio and his henchman,“Carmine DeSapio holds the
dubious distinction of being the first Italian-American boss of
Tammany Hall, the New York City political machine. For
more information on DeSapio and the politics of post-war
New York, see John Davenport, “Skinning the Tiger: Carmine
DeSapio and the End of the Tammany Era,” New York Affairs
(1975): 3:1. says Lippman. “I was the representative to the city

council and was very much involved in creating a viable
urban-renewal plan that went beyond simply adding more
luxury housing to the neighborhood.”

Such involvement would blossom into greater political
activity during the 1960s. By 1965, Lippman had become an
“outspoken” supporter for political candidates like William
Fitts Ryan, a Democratic elected to Congress with the help of
reform clubs and one of the first U.S. representatives to speak
out against the Vietnam War.

It wasn’t long before Lippman, too, was an outspoken
opponent of U.S. involvement in Indochina. “I was against the
Vietnam war from the time Kennedy sent troops,” she says. “I
had read the stories by reporters and journalists sent to cover
the early stages of the conflict. I really believed their forecast
that it would become a quagmire.”

Such opposition permeated the Stallman-Lippman
household. In 1967, Lippman remarried. Her new husband,
Maurice Lippman, a major in the Air National Guard, resigned
his commission to demonstrate his opposition to the war.
Lippman’s stepson, Andrew Lippman, was at MIT and
temporarily eligible for a student deferment. Still, the threat of
induction should that deferment disappear, as it eventually did,
made the risk of U.S. escalation all the more immediate.
Finally, there was Richard who, though younger, faced the
prospect of choosing between Vietnam or Canada when the
war lasted into the 1970s.

“Vietnam was a major issue in our household,” says
Lippman. “We talked about it constantly: what would we do if
the war continued, what steps Richard or his stepbrother
would take if they got drafted. We were all opposed to the war
and the draft. We really thought it was immoral.”

For Stallman, the Vietnam War elicited a complex mixture
of emotions: confusion, horror, and, ultimately, a profound
sense of political impotence. As a kid who could barely cope
in the mild authoritarian universe of private school, Stallman
experienced a shiver whenever the thought of Army boot camp
presented itself.

“I was devastated by the fear, but I couldn’t imagine what to
do and didn’t have the guts to go demonstrate,” recalls
Stallman, whose March 18th birthday earned him a dreaded
low number in the draft lottery when the federal government
finally eliminated college deferments in 1971. “I couldn’t
envision moving to Canada or Sweden. The idea of getting up
by myself and moving somewhere. How could I do that? I
didn’t know how to live by myself. I wasn’t the kind of person
who felt confident in approaching things like that.”

Stallman says he was both impressed and shamed by the
family members who did speak out. Recalling a bumper
sticker on his father’s car likening the My Lai massacre to
similar Nazi atrocities in World War II, he says he was
“excited” by his father’s gesture of outrage. “I admired him for
doing it,” Stallman says. “But I didn’t imagine that I could do
anything. I was afraid that the juggernaut of the draft was
going to destroy me.”

Although descriptions of his own unwillingness to speak out
carry a tinge of nostalgic regret, Stallman says he was
ultimately turned off by the tone and direction of the anti-war
movement. Like other members of the Science Honors
Program, he saw the weekend demonstrations at Columbia as
little more than a distracting spectacle.Chess, another
Columbia Science Honors Program alum, describes the
protests as “background noise.” “We were all political,” he
says, “but the SHP was imporant. We would never have

skipped it for a demonstration.” Ultimately, Stallman says, the
irrational forces driving the anti-war movement became
indistinguishable from the irrational forces driving the rest of
youth culture. Instead of worshiping the Beatles, girls in
Stallman’s age group were suddenly worshiping firebrands
like Abbie Hoffman and Jerry Rubin. To a kid already
struggling to comprehend his teenage peers, escapist slogans
like “make love not war” had a taunting quality. Not only was
it a reminder that Stallman, the short-haired outsider who
hated rock ‘n’ roll, detested drugs, and didn’t participate in
campus demonstrations, wasn’t getting it politically; he wasn’t
“getting it” sexually either.

“I didn’t like the counter culture much,” Stallman admits. “I
didn’t like the music. I didn’t like the drugs. I was scared of
the drugs. I especially didn’t like the anti-intellectualism, and I
didn’t like the prejudice against technology. After all, I loved a
computer. And I didn’t like the mindless anti-Americanism
that I often encountered. There were people whose thinking
was so simplistic that if they disapproved of the conduct of the
U.S. in the Vietnam War, they had to support the North
Vietnamese. They couldn’t imagine a more complicated
position, I guess.”

Such comments alleviate feelings of timidity. They also
underline a trait that would become the key to Stallman’s own
political maturation. For Stallman, political confidence was
directly proportionate to personal confidence. By 1970,
Stallman had become confident in few things outside the realm
of math and science. Nevertheless, confidence in math gave
him enough of a foundation to examine the anti-war
movement in purely logical terms. In the process of doing so,
Stallman had found the logic wanting. Although opposed to
the war in Vietnam, Stallman saw no reason to disavow war as

a means for defending liberty or correcting injustice. Rather
than widen the breach between himself and his peers,
however, Stallman elected to keep the analysis to himself.

In 1970, Stallman left behind the nightly dinnertime
conversations about politics and the Vietnam War as he
departed for Harvard. Looking back, Stallman describes the
transition from his mother’s Manhattan apartment to life in a
Cambridge dorm as an “escape.” Peers who watched Stallman
make the transition, however, saw little to suggest a liberating
experience.

“He seemed pretty miserable for the first while at Harvard,”
recalls Dan Chess, a classmate in the Science Honors Program
who also matriculated at Harvard. “You could tell that human
interaction was really difficult for him, and there was no way
of avoiding it at Harvard. Harvard was an intensely social kind
of place.”

To ease the transition, Stallman fell back on his strengths:
math and science. Like most members of the Science Honors
Program, Stallman breezed through the qualifying exam for
Math 55, the legendary “boot camp” class for freshman
mathematics “concentrators” at Harvard. Within the class,
members of the Science Honors Program formed a durable
unit. “We were the math mafia,” says Chess with a laugh.
“Harvard was nothing, at least compared with the SHP.”

To earn the right to boast, however, Stallman, Chess, and
the other SHP alumni had to get through Math 55. Promising
four years worth of math in two semesters, the course favored
only the truly devout. “It was an amazing class,” says David
Harbater, a former “math mafia” member and now a professor
of mathematics at the University of Pennsylvania. “It’s
probably safe to say there has never been a class for beginning

college students that was that intense and that advanced. The
phrase I say to people just to get it across is that, among other
things, by the second semester we were discussing the
differential geometry of Banach manifolds. That’s usually
when their eyes bug out, because most people don’t start
talking about Banach manifolds until their second year of
graduate school.”

Starting with 75 students, the class quickly melted down to
20 by the end of the second semester. Of that 20, says
Harbater, “only 10 really knew what they were doing.” Of that
10, 8 would go on to become future mathematics professors, 1
would go on to teach physics.

“The other one,” emphasizes Harbater, “was Richard
Stallman.”

Seth Breidbart, a fellow Math 55 classmate, remembers
Stallman distinguishing himself from his peers even then.

“He was a stickler in some very strange ways,” says
Breidbart. There is a standard technique in math which
everybody does wrong. It’s an abuse of notation where you
have to define a function for something and what you do is
you define a function and then you prove that it’s well defined.
Except the first time he did and presented it, he defined a
relation and proved that it’s a function. It’s the exact same
proof, but he used the correct terminology, which no one else
did. That’s just the way he was.”

It was in Math 55 that Richard Stallman began to cultivate a
reputation for brilliance. Breidbart agrees, but Chess, whose
competitive streak refused to yield, says the realization that
Stallman might be the best mathematician in the class didn’t
set in until the next year. “It was during a class on Real
Analysis, which I took with Richard the next year,” says

Chess, now a math professor at Hunter College. “I actually
remember in a proof about complex valued measures that
Richard came up with an idea that was basically a metaphor
from the calculus of variations. It was the first time I ever saw
somebody solve a problem in a brilliantly original way.”

Chess makes no bones about it: watching Stallman’s
solution unfold on the chalkboard was a devastating blow. As
a kid who’d always taken pride in being the smartest
mathematician the room, it was like catching a glimpse of his
own mortality. Years later, as Chess slowly came to accept the
professional rank of a good-but-not-great mathematician, he
had Stallman’s sophomore-year proof to look back on as a
taunting early indicator.

“That’s the thing about mathematics,” says Chess. “You
don’t have to be a first-rank mathematician to recognize first-
rate mathematical talent. I could tell I was up there, but I could
also tell I wasn’t at the first rank. If Richard had chosen to be a
mathematician, he would have been a first-rank
mathematician.”

For Stallman, success in the classroom was balanced by the
same lack of success in the social arena. Even as other
members of the math mafia gathered to take on the Math 55
problem sets, Stallman preferred to work alone. The same
went for living arrangements. On the housing application for
Harvard, Stallman clearly spelled out his preferences. “I said I
preferred an invisible, inaudible, intangible roommate,” he
says. In a rare stroke of bureaucratic foresight, Harvard’s
housing office accepted the request, giving Stallman a one-
room single for his freshman year.

Breidbart, the only math-mafia member to share a dorm
with Stallman that freshman year, says Stallman slowly but

surely learned how to interact with other students. He recalls
how other dorm mates, impressed by Stallman’s logical
acumen, began welcoming his input whenever an intellectual
debate broke out in the dining club or dorm commons.

“We had the usual bull sessions about solving the world’s
problems or what would be the result of something,” recalls
Breidbart. “Say somebody discovers an immortality serum.
What do you do? What are the political results? If you give it
to everybody, the world gets overcrowded and everybody dies.
If you limit it, if you say everyone who’s alive now can have it
but their children can’t, then you end up with an underclass of
people without it. Richard was just better able than most to see
the unforeseen circumstances of any decision.”

Stallman remembers the discussions vividly. “I was always
in favor of immortality,” he says. “I was shocked that most
people regarded immortality as a bad thing. How else would
we be able to see what the world is like 200 years from now?”

Although a first-rank mathematician and first-rate debater,
Stallman shied away from clear-cut competitive events that
might have sealed his brilliant reputation. Near the end of
freshman year at Harvard, Breidbart recalls how Stallman
conspicuously ducked the Putnam exam, a prestigious test
open to math students throughout the U.S. and Canada. In
addition to giving students a chance to measure their
knowledge in relation to their peers, the Putnam served as a
chief recruiting tool for academic math departments.
According to campus legend, the top scorer automatically
qualified for a graduate fellowship at any school of his choice,
including Harvard.

Like Math 55, the Putnam was a brutal test of merit. A six-
hour exam in two parts, it seemed explicitly designed to

separate the wheat from the chaff. Breidbart, a veteran of both
the Science Honors Program and Math 55, describes it as
easily the most difficult test he ever took. “Just to give you an
idea of how difficult it was,” says Breidbart, “the top score
was a 120, and my score the first year was in the 30s. That
score was still good enough to place me 101st in the country.”

Surprised that Stallman, the best student in the class, had
passed on the test, Breidbart says he and a fellow classmate
cornered him in the dining common and demanded an
explanation. “He said he was afraid of not doing well,”
Breidbart recalls.

Breidbart and the friend quickly wrote down a few problems
from memory and gave them to Stallman. “He solved all of
them,” Breidbart says, “leading me to conclude that by not
doing well, he either meant coming in second or getting
something wrong.”

Stallman remembers the episode a bit differently. “I
remember that they did bring me the questions and it’s
possible that I solved one of them, but I’m pretty sure I didn’t
solve them all,” he says. Nevertheless, Stallman agrees with
Breidbart’s recollection that fear was the primary reason for
not taking the test. Despite a demonstrated willingness to point
out the intellectual weaknesses of his peers and professors in
the classroom, Stallman hated the notion of head-to-head
competition.

“It’s the same reason I never liked chess,” says Stallman.
“Whenever I’d play, I would become so consumed by the fear
of making a single mistake that I would start making stupid
mistakes very early in the game. The fear became a self-
fulfilling prophecy.”

Whether such fears ultimately prompted Stallman to shy
away from a mathematical career is a moot issue. By the end
of his freshman year at Harvard, Stallman had other interests
pulling him away from the field. Computer programming, a
latent fascination throughout Stallman’s high-school years,
was becoming a full-fledged passion. Where other math
students sought occasional refuge in art and history classes,
Stallman sought it in the computer-science laboratory.

For Stallman, the first taste of real computer programming
at the IBM New York Scientific Center had triggered a desire
to learn more. “Toward the end of my first year at Harvard
school, I started to have enough courage to go visit computer
labs and see what they had. I’d ask them if they had extra
copies of any manuals that I could read.”

Taking the manuals home, Stallman would examine
machine specifications, compare them with other machines he
already knew, and concoct a trial program, which he would
then bring back to the lab along with the borrowed manual.
Although some labs balked at the notion of a strange kid
coming off the street and working on the lab machinery, most
recognized competence when they saw it and let Stallman run
the programs he had created.

One day, near the end of freshman year, Stallman heard
about a special laboratory near MIT. The laboratory was
located on the ninth floor an off-campus building in Tech
Square, the newly built facility dedicated to advanced
research. According to the rumors, the lab itself was dedicated
to the cutting-edge science of artificial intelligence and
boasted the cutting-edge machines and software programs to
match.

Intrigued, Stallman decided to pay a visit.

The trip was short, about 2 miles on foot, 10 minutes by
train, but as Stallman would soon find out, MIT and Harvard
can feel like opposite poles of the same planet. With its maze-
like tangle of interconnected office buildings, the Institute’s
campus offered an aesthetic yin to Harvard’s spacious
colonial-village yang. The same could be said for the student
body, a geeky collection of ex-high school misfits known more
for its predilection for pranks than its politically powerful
alumni.

The yin-yang relationship extended to the AI Lab as well.
Unlike Harvard computer labs, there was no grad-student
gatekeeper, no clipboard waiting list for terminal access, no
explicit atmosphere of “look but don’t touch.” Instead,
Stallman found only a collection of open terminals and robotic
arms, presumably the artifacts of some A.I. experiment.

Although the rumors said anybody could sit down at the
terminals, Stallman decided to stick with the original plan.
When he encountered a lab employee, he asked if the lab had
any spare manuals it could loan to an inquisitive student.
“They had some, but a lot of things weren’t documented,”
Stallman recalls. “They were hackers after all.”

Stallman left with something even better than a manual: a
job. Although he doesn’t remember what the first project was,
he does remember coming back to the AI Lab the next week,
grabbing an open terminal and writing software code.

Looking back, Stallman sees nothing unusual in the AI
Lab’s willingness to accept an unproven outsider at first
glance. “That’s the way it was back then,” he says. “That’s the
way it still is now. I’ll hire somebody when I meet him if I see
he’s good. Why wait? Stuffy people who insist on putting
bureaucracy into everything really miss the point. If a person

is good, he shouldn’t have to go through a long, detailed hiring
process; he should be sitting at a computer writing code.”

To get a taste of “bureaucratic and stuffy,” Stallman need
only visit the computer labs at Harvard. There, access to the
terminals was doled out according to academic rank. As an
undergrad, Stallman usually had to sign up or wait until
midnight, about the time most professors and grad students
finished their daily work assignments. The waiting wasn’t
difficult, but it was frustrating. Waiting for a public terminal,
knowing all the while that a half dozen equally usable
machines were sitting idle inside professors’ locked offices,
seemed the height of illogic. Although Stallman paid the
occasional visit to the Harvard computer labs, he preferred the
more egalitarian policies of the AI Lab. “It was a breath of
fresh air,” he says. “At the AI Lab, people seemed more
concerned about work than status.”

Stallman quickly learned that the AI Lab’s first-come, first-
served policy owed much to the efforts of a vigilant few. Many
were holdovers from the days of Project MAC, the
Department of Defense-funded research program that had
given birth to the first time-share operating systems. A few
were already legends in the computing world. There was
Richard Greenblatt, the lab’s in-house Lisp expert and author
of MacHack, the computer chess program that had once
humbled A.I. critic Hubert Dreyfus. There was Gerald
Sussman, original author of the robotic block-stacking
program HACKER. And there was Bill Gosper, the in-house
math whiz already in the midst of an 18-month hacking bender
triggered by the philosophical implications of the computer
game LIFE.See Steven Levy, Hackers (Penguin USA
[paperback], 1984): 144. Levy devotes about five pages to
describing Gosper’s fascination with LIFE, a math-based

software game first created by British mathematician John
Conway. I heartily recommend this book as a supplement,
perhaps even a prerequisite, to this one.

Members of the tight-knit group called themselves ”
hackers.” Over time, they extended the “hacker” description to
Stallman as well. In the process of doing so, they inculcated
Stallman in the ethical traditions of the “hacker ethic .” To be a
hacker meant more than just writing programs, Stallman
learned. It meant writing the best possible programs. It meant
sitting at a terminal for 36 hours straight if that’s what it took
to write the best possible programs. Most importantly, it meant
having access to the best possible machines and the most
useful information at all times. Hackers spoke openly about
changing the world through software, and Stallman learned the
instinctual hacker disdain for any obstacle that prevented a
hacker from fulfilling this noble cause. Chief among these
obstacles were poor software, academic bureaucracy, and
selfish behavior.

Stallman also learned the lore, stories of how hackers, when
presented with an obstacle, had circumvented it in creative
ways. Stallman learned about ” lock hacking,” the art of
breaking into professors’ offices to “liberate” sequestered
terminals. Unlike their pampered Harvard counterparts, MIT
faculty members knew better than to treat the AI Lab’s
terminal as private property. If a faculty member made the
mistake of locking away a terminal for the night, hackers were
quick to correct the error. Hackers were equally quick to send
a message if the mistake repeated itself. “I was actually shown
a cart with a heavy cylinder of metal on it that had been used
to break down the door of one professor’s office,“Gerald
Sussman, an MIT faculty member and hacker whose work at
the AI Lab predates Stallman’s, disputes this memory.

According to Sussman, the hackers never broke any doors to
retrieve terminals. Stallman says.

Such methods, while lacking in subtlety, served a purpose.
Although professors and administrators outnumbered hackers
two-to-one inside the AI Lab, the hacker ethic prevailed.
Indeed, by the time of Stallman’s arrival at the AI Lab, hackers
and the AI Lab administration had coevolved into something
of a symbiotic relationship. In exchange for fixing the
machines and keeping the software up and running, hackers
earned the right to work on favorite pet projects. Often, the pet
projects revolved around improving the machines and software
programs even further. Like teenage hot-rodders, most hackers
viewed tinkering with machines as its own form of
entertainment.

Nowhere was this tinkering impulse better reflected than in
the operating system that powered the lab’s central PDP-6
mini-computer. Dubbed ITS, short for the Incompatible Time
Sharing system, the operating system incorporated the hacking
ethic into its very design. Hackers had built it as a protest to
Project MAC’s original operating system, the Compatible
Time Sharing System, CTSS, and named it accordingly. At the
time, hackers felt the CTSS design too restrictive, limiting
programmers’ power to modify and improve the program’s
own internal architecture if needed. According to one legend
passed down by hackers, the decision to build ITS had
political overtones as well. Unlike CTSS, which had been
designed for the IBM 7094, ITS was built specifically for the
PDP-6. In letting hackers write the systems themselves, AI
Lab administrators guaranteed that only hackers would feel
comfortable using the PDP-6. In the feudal world of academic
research, the gambit worked. Although the PDP-6 was co-

owned in conjunction with other departments, A.I. researchers
soon had it to themselves.

ITS boasted features most commercial operating systems
wouldn’t offer for years, features such as multitasking,
debugging, and full-screen editing capability. Using it and the
PDP-6 as a foundation, the Lab had been able to declare
independence from Project MAC shortly before Stallman’s
arrival.I apologize for the whirlwind summary of ITS’ genesis,
an operating system many hackers still regard as the epitome
of the hacker ethos. For more information on the program’s
political significance, see Simson Garfinkel, Architects of the
Information Society: Thirty-Five Years of the Laboratory for
Computer Science at MIT (MIT Press, 1999).

As an apprentice hacker, Stallman quickly became
enamored with ITS. Although forbidding to most newcomers,
the program contained many built-in features that provided a
lesson in software development to hacker apprentices such as
himself.

“ITS had a very elegant internal mechanism for one
program to examine another,” says Stallman, recalling the
program. “You could examine all sorts of status about another
program in a very clean, well-specified way.”

Using this feature, Stallman was able to watch how
programs written by hackers processed instructions as they
ran. Another favorite feature would allow the monitoring
program to freeze the monitored program’s job between
instructions. In other operating systems, such a command
would have resulted in half-computed gibberish or an
automatic systems crash. In ITS, it provided yet another way
to monitor the step-by-step performance.

“If you said, `Stop the job,’ it would always be stopped in
user mode. It would be stopped between two user-mode
instructions, and everything about the job would be consistent
for that point,” Stallman says. “If you said, `Resume the job,’
it would continue properly. Not only that, but if you were to
change the status of the job and then change it back,
everything would be consistent. There was no hidden status
anywhere.”

By the end of 1970, hacking at the AI Lab had become a
regular part of Stallman’s weekly schedule. From Monday to
Thursday, Stallman devoted his waking hours to his Harvard
classes. As soon as Friday afternoon arrived, however, he was
on the T, heading down to MIT for the weekend. Stallman
usually timed his arrival to coincide with the ritual food run.
Joining five or six other hackers in their nightly quest for
Chinese food, he would jump inside a beat-up car and head
across the Harvard Bridge into nearby Boston. For the next
two hours, he and his hacker colleagues would discuss
everything from ITS to the internal logic of the Chinese
language and pictograph system. Following dinner, the group
would return to MIT and hack code until dawn.

For the geeky outcast who rarely associated with his high-
school peers, it was a heady experience, suddenly hanging out
with people who shared the same predilection for computers,
science fiction, and Chinese food. “I remember many sunrises
seen from a car coming back from Chinatown,” Stallman
would recall nostalgically, 15 years after the fact in a speech at
the Swedish Royal Technical Institute. “It was actually a very
beautiful thing to see a sunrise, ‘cause that’s such a calm time
of day. It’s a wonderful time of day to get ready to go to bed.
It’s so nice to walk home with the light just brightening and
the birds starting to chirp; you can get a real feeling of gentle

satisfaction, of tranquility about the work that you have done
that night.“See Richard Stallman, “RMS lecture at KTH
(Sweden),” (October 30, 1986).

http://www.gnu.org/philosophy/stallman-kth.html

The more Stallman hung out with the hackers, the more he
adopted the hacker worldview. Already committed to the
notion of personal liberty, Stallman began to infuse his actions
with a sense of communal responsibility. When others violated
the communal code, Stallman was quick to speak out. Within a
year of his first visit, Stallman was the one breaking into
locked offices, trying to recover the sequestered terminals that
belonged to the lab community as a whole. In true hacker
fashion, Stallman also sought to make his own personal
contribution to the art of lock hacking. One of the most artful
door-opening tricks, commonly attributed to Greenblatt,
involved bending a stiff wire into a cane and attaching a loop
of tape to the long end. Sliding the wire under the door, a
hacker could twist and rotate the wire so that the long end
touched the door knob. Provided the adhesive on the tape held,
a hacker could open the doorknob with a few sharp twists.

When Stallman tried the trick, he found it good but wanting
in a few places. Getting the tape to stick wasn’t always easy,
and twisting the wire in a way that turned the doorknob was
similarly difficult. Stallman remembered that the hallway
ceiling possessed tiles that could be slid away. Some hackers,
in fact, had used the false ceiling as a way to get around
locked doors, an approach that generally covered the
perpetrator in fiberglass but got the job done.

Stallman considered an alternative approach. What if,
instead of slipping a wire under the door, a hacker slid away
one of the panels and stood over the door jamb?

Stallman took it upon himself to try it out. Instead of using a
wire, Stallman draped out a long U-shaped loop of magnetic
tape, fastening a loop of adhesive tape at the base of the U.
Standing over the door jamb, he dangled the tape until it
looped under the doorknob. Lifting the tape until the adhesive
fastened, he then pulled on the left end of the tape, twisting the
doorknob counter-clockwise. Sure enough, the door opened.
Stallman had added a new twist to the art of lock hacking.

“Sometimes you had to kick the door after you turned the
door knob,” says Stallman, recalling the lingering bugginess of
the new method. “It took a little bit of balance to pull it off.”

Such activities reflected a growing willingness on
Stallman’s part to speak and act out in defense of political
beliefs. The AI Lab’s spirit of direct action had proved
inspirational enough for Stallman to break out of the timid
impotence of his teenage years. Breaking into an office to free
a terminal wasn’t the same as taking part in a protest march,
but it was effective in ways that most protests weren’t. It
solved the problem at hand.

By the time of his last years at Harvard, Stallman was
beginning to apply the whimsical and irreverent lessons of the
AI Lab back at school.

“Did he tell you about the snake?” his mother asks at one
point during an interview. “He and his dorm mates put a snake
up for student election. Apparently it got a considerable
number of votes.”

Stallman verifies the snake candidacy with a few caveats.
The snake was a candidate for election within Currier House,
Stallman’s dorm, not the campus-wide student council.
Stallman does remember the snake attracting a fairly
significant number of votes, thanks in large part to the fact that

both the snake and its owner both shared the same last name.
“People may have voted for it, because they thought they were
voting for the owner,” Stallman says. “Campaign posters said
that the snake was `slithering for’ the office. We also said it
was an `at large’ candidate, since it had climbed into the wall
through the ventilating unit a few weeks before and nobody
knew where it was.”

Running a snake for dorm council was just one of several
election-related pranks. In a later election, Stallman and his
dorm mates nominated the house master’s son. “His platform
was mandatory retirement at age seven,” Stallman recalls.
Such pranks paled in comparison to the fake-candidate pranks
on the MIT campus, however. One of the most successful
fake-candidate pranks was a cat named Woodstock, which
actually managed to outdraw most of the human candidates in
a campus-wide election. “They never announced how many
votes Woodstock got, and they treated those votes as spoiled
ballots,” Stallman recalls. “But the large number of spoiled
ballots in that election suggested that Woodstock had actually
won. A couple of years later, Woodstock was suspiciously run
over by a car. Nobody knows if the driver was working for the
MIT administration.” Stallman says he had nothing to do with
Woodstock’s candidacy, “but I admired it.“In an email shortly
after this book went into its final edit cycle, Stallman says he
drew political inspiration from the Harvard campus as well.
“In my first year of Harvard, in a Chinese History class, I read
the story of the first revolt against the Chin dynasty,” he says.
“The story is not reliable history, but it was very moving.”

At the AI Lab, Stallman’s political activities had a sharper-
edged tone. During the 1970s, hackers faced the constant
challenge of faculty members and administrators pulling an
end-run around ITS and its hacker-friendly design. One of the

first attempts came in the mid-1970s, as more and more
faculty members began calling for a file security system to
protect research data. Most other computer labs had installed
such systems during late 1960s, but the AI Lab, through the
insistence of Stallman and other hackers, remained a security-
free zone.

For Stallman, the opposition to security was both ethical
and practical. On the ethical side, Stallman pointed out that the
entire art of hacking relied on intellectual openness and trust.
On the practical side, he pointed to the internal structure of
ITS being built to foster this spirit of openness, and any
attempt to reverse that design required a major overhaul.

“The hackers who wrote the Incompatible Timesharing
System decided that file protection was usually used by a self-
styled system manager to get power over everyone else,”
Stallman would later explain. “They didn’t want anyone to be
able to get power over them that way, so they didn’t
implement that kind of a feature. The result was, that
whenever something in the system was broken, you could
always fix it.“See Richard Stallman (1986).

Through such vigilance, hackers managed to keep the AI
Lab’s machines security-free. Over at the nearby MIT
Laboratory for Computer Sciences, however, security-minded
faculty members won the day. The LCS installed its first
password-based system in 1977. Once again, Stallman took it
upon himself to correct what he saw as ethical laxity. Gaining
access to the software code that controlled the password
system, Stallman implanted a software command that sent out
a message to any LCS user who attempted to choose a unique
password. If a user entered “starfish,” for example, the
message came back something like: I see you chose the
password “starfish.” I suggest that you switch to the password

“carriage return.” It’s much easier to type, and also it stands up
to the principle that there should be no passwords.See Steven
Levy, Hackers (Penguin USA [paperback], 1984): 417. I have
modified this quote, which Levy also uses as an excerpt, to
illustrate more directly how the program might reveal the false
security of the system. Levy uses the placeholder “[such and
such].” Users who did enter “carriage return”-that is, users
who simply pressed the Enter or Return button, entering a
blank string instead of a unique password-left their accounts
accessible to the world at large. As scary as that might have
been for some users, it reinforced the hacker notion that
Institute computers, and even Institute computer files,
belonged to the public, not private individuals. Stallman,
speaking in an interview for the 1984 book Hackers, proudly
noted that one-fifth of the LCS staff accepted this argument
and employed the blank-string password.See Steven Levy,
Hackers (Penguin USA [paperback], 1984): 417.

Stallman’s null-string crusade would prove ultimately futile.
By the early 1980s, even the AI Lab’s machines were sporting
password-based security systems. Even so, it represents a
major milestone in terms of Stallman’s personal and political
maturation. To the objective observer familiar with Stallman’s
later career, it offers a convenient inflection point between the
timid teenager afraid to speak out even on issues of life-
threatening importance and the adult activist who would soon
turn needling and cajoling into a full-time occupation.

In voicing his opposition to computer security, Stallman
drew on many of the forces that had shaped his early life:
hunger for knowledge, distaste for authority, and frustration
over hidden procedures and rules that rendered some people
clueless outcasts. He would also draw on the ethical concepts
that would shape his adult life: communal responsibility, trust,

and the hacker spirit of direct action. Expressed in software-
computing terms, the null string represents the 1.0 version of
the Richard Stallman political worldview-incomplete in a few
places but, for the most part, fully mature.

Looking back, Stallman hesitates to impart too much
significance to an event so early in his hacking career. “In that
early stage there were a lot of people who shared my feelings,”
he says. “The large number of people who adopted the null
string as their password was a sign that many people agreed
that it was the proper thing to do. I was simply inclined to be
an activist about it.”

Stallman does credit the AI Lab for awakening that activist
spirit, however. As a teenager, Stallman had observed political
events with little idea as to how a single individual could do or
say anything of importance. As a young adult, Stallman was
speaking out on matters in which he felt supremely confident,
matters such as software design, communal responsibility, and
individual freedom. “I joined this community which had a way
of life which involved respecting each other’s freedom,” he
says. “It didn’t take me long to figure out that that was a good
thing. It took me longer to come to the conclusion that this was
a moral issue.”

Hacking at the AI Lab wasn’t the only activity helping to
boost Stallman’s esteem. During the middle of his sophomore
year at Harvard, Stallman had joined up with a dance troupe
that specialized in folk dances . What began as a simple
attempt to meet women and expand his social horizons soon
expanded into yet another passion alongside hacking. Dancing
in front of audiences dressed in the native garb of a Balkan
peasant, Stallman no longer felt like the awkward,
uncoordinated 10-year-old whose attempts to play football had
ended in frustration. He felt confident, agile, and alive. For a

brief moment, he even felt a hint of emotional connection. He
soon found being in front of an audience fun, and it wasn’t
long thereafter that he began craving the performance side of
dancing almost as much as the social side.

Although the dancing and hacking did little to improve
Stallman’s social standing, they helped him overcome the
feelings of weirdness that had clouded his pre-Harvard life.
Instead of lamenting his weird nature, Stallman found ways to
celebrate it. In 1977, while attending a science-fiction
convention, he came across a woman selling custom-made
buttons. Excited, Stallman ordered a button with the words
“Impeach God” emblazoned on it.

For Stallman, the “Impeach God” message worked on many
levels. An atheist since early childhood, Stallman first saw it
as an attempt to set a “second front” in the ongoing debate on
religion. “Back then everybody was arguing about God being
dead or alive,” Stallman recalls. “`Impeach God’ approached
the subject of God from a completely different viewpoint. If
God was so powerful as to create the world and yet do nothing
to correct the problems in it, why would we ever want to
worship such a God? Wouldn’t it be better to put him on
trial?”

At the same time, “Impeach God” was a satirical take on
America and the American political system. The Watergate
scandal of the 1970s affected Stallman deeply. As a child,
Stallman had grown up mistrusting authority. Now, as an
adult, his mistrust had been solidified by the culture of the AI
Lab hacker community. To the hackers, Watergate was merely
a Shakespearean rendition of the daily power struggles that
made life such a hassle for those without privilege. It was an
outsized parable for what happened when people traded liberty
and openness for security and convenience.

Buoyed by growing confidence, Stallman wore the button
proudly. People curious enough to ask him about it received
the same well-prepared spiel. “My name is Jehovah,” Stallman
would say. “I have a special plan to save the universe, but
because of heavenly security reasons I can’t tell you what that
plan is. You’re just going to have to put your faith in me,
because I see the picture and you don’t. You know I’m good
because I told you so. If you don’t believe me, I’ll throw you
on my enemies list and throw you in a pit where Infernal
Revenue Service will audit your taxes for eternity.”

Those who interpreted the spiel as a word-for-word parody
of the Watergate hearings only got half the message. For
Stallman, the other half of the message was something only his
fellow hackers seemed to be hearing. One hundred years after
Lord Acton warned about absolute power corrupting
absolutely, Americans seemed to have forgotten the first part
of Acton’s truism: power, itself, corrupts. Rather than point out
the numerous examples of petty corruption, Stallman felt
content voicing his outrage toward an entire system that
trusted power in the first place.

“I figured why stop with the small fry,” says Stallman,
recalling the button and its message. “If we went after Nixon,
why not going after Mr. Big. The way I see it, any being that
has power and abuses it deserves to have that power taken
away.”

Small Puddle of Freedom

Ask anyone who’s spent more than a minute in Richard
Stallman’s presence, and you’ll get the same recollection:
forget the long hair. Forget the quirky demeanor. The first
thing you notice is the gaze. One look into Stallman’s green
eyes, and you know you’re in the presence of a true believer.

To call the Stallman gaze intense is an understatement.
Stallman’s eyes don’t just look at you; they look through you.
Even when your own eyes momentarily shift away out of
simple primate politeness, Stallman’s eyes remain locked-in,
sizzling away at the side of your head like twin photon beams.

Maybe that’s why most writers, when describing
Stallman, tend to go for the religious angle. In a 1998
Salon.com article titled “The Saint of Free Software,”
Andrew Leonard describes Stallman’s green eyes as
“radiating the power of an Old Testament prophet.“See
Andrew Leonard, “The
Saint of Free Software,”
Salon.com (August 1998).

http://www.salon.com/21st/feature/1998/08/cov_31feature.h
tml
 A 1999 Wired magazine article describes the Stallman
beard as “Rasputin-like,“See Leander Kahney, “Linux’s
Forgotten Man,” Wired
News
(March 5, 1999).
http://www.wired.com/news/print/0,1294,18291,00.html
 while a London Guardian profile describes the Stallman
smile as the smile of “a disciple seeing Jesus.“See
“Programmer on moral high
ground; Free software is
a moral issue for Richard Stallman believes in freedom
and free software.” London Guardian (November 6, 1999).
These are just a small sampling of the religious
comparisons. To date, the most extreme comparison has
to go to Linus Torvalds, who, in his autobiography-see
Linus Torvalds and David Diamond, Just For Fun: The
Story of an Accidentaly Revolutionary (HarperCollins

Publishers, Inc., 2001): 58-writes “Richard Stallman is
the God of Free Software.” Honorable mention goes to
Larry Lessig, who, in a footnote description of
Stallman in his book-see Larry Lessig, The Future of
Ideas (Random House, 2001): 270-likens Stallman to
Moses: … as with Moses, it was another leader,
Linus Torvalds, who finally carried the movement into
the promised land by facilitating the development of
the final part of the OS puzzle. Like Moses, too,
Stallman is both respected and reviled by allies within
the movement. He is [an] unforgiving, and hence for
many inspiring, leader of a critically important aspect
of modern culture. I have deep respect for the
principle and commitment of this extraordinary
individual, though I also have great respect for those
who are courageous enough to question his thinking and
then sustain his wrath. In a final interview with
Stallman, I asked him his thoughts about the religious
comparisons. “Some people do compare me with an Old
Testament prophent, and the reason is Old Testament
prophets said certain social practices were wrong. They
wouldn’t compromise on moral issues. They couldn’t be
bought off, and they were usually treated with contempt.”

Such analogies serve a purpose, but they ultimately fall
short. That’s because they fail to take into account the
vulnerable side of the Stallman persona. Watch the Stallman
gaze for an extended period of time, and you will begin to
notice a subtle change. What appears at first to be an attempt
to intimidate or hypnotize reveals itself upon second and third
viewing as a frustrated attempt to build and maintain contact.
If, as Stallman himself has suspected from time to time, his
personality is the product of autism or Asperger Syndrome, his

eyes certainly confirm the diagnosis. Even at their most high-
beam level of intensity, they have a tendency to grow cloudy
and distant, like the eyes of a wounded animal preparing to
give up the ghost.

My own first encounter with the legendary Stallman gaze
dates back to the March, 1999, LinuxWorld Convention and
Expo in San Jose, California. Billed as a “coming out party”
for the Linux software community, the convention also stands
out as the event that reintroduced Stallman to the technology
media. Determined to push for his proper share of credit,
Stallman used the event to instruct spectators and reporters
alike on the history of the GNU Project and the project’s overt
political objectives.

As a reporter sent to cover the event, I received my own
Stallman tutorial during a press conference announcing the
release of GNOME 1.0, a free software graphic user interface.
Unwittingly, I push an entire bank of hot buttons when I throw
out my very first question to Stallman himself: do you think
GNOME’s maturity will affect the commercial popularity of
the Linux operating system?

“I ask that you please stop calling the operating system
Linux,” Stallman responds, eyes immediately zeroing in on
mine. “The Linux kernel is just a small part of the operating
system. Many of the software programs that make up the
operating system you call Linux were not developed by Linus
Torvalds at all. They were created by GNU Project volunteers,
putting in their own personal time so that users might have a
free operating system like the one we have today. To not
acknowledge the contribution of those programmers is both
impolite and a misrepresentation of history. That’s why I ask
that when you refer to the operating system, please call it by
its proper name, GNU/Linux.”

Taking the words down in my reporter’s notebook, I notice
an eerie silence in the crowded room. When I finally look up, I
find Stallman’s unblinking eyes waiting for me. Timidly, a
second reporter throws out a question, making sure to use the
term ” GNU/Linux” instead of Linux. Miguel de Icaza, leader
of the GNOME project, fields the question. It isn’t until
halfway through de Icaza’s answer, however, that Stallman’s
eyes finally unlock from mine. As soon as they do, a mild
shiver rolls down my back. When Stallman starts lecturing
another reporter over a perceived error in diction, I feel a
guilty tinge of relief. At least he isn’t looking at me, I tell
myself.

For Stallman, such face-to-face moments would serve their
purpose. By the end of the first LinuxWorld show, most
reporters know better than to use the term “Linux” in his
presence, and wired.com is running a story comparing
Stallman to a pre-Stalinist revolutionary erased from the
history books by hackers and entrepreneurs eager to downplay
the GNU Project’s overly political objectives.2 Other articles
follow, and while few reporters call the operating system
GNU/Linux in print, most are quick to credit Stallman for
launching the drive to build a free software operating system
15 years before.

I won’t meet Stallman again for another 17 months. During
the interim, Stallman will revisit Silicon Valley once more for
the August, 1999 LinuxWorld show. Although not invited to
speak, Stallman does managed to deliver the event’s best line.
Accepting the show’s Linus Torvalds Award for Community
Service-an award named after Linux creator Linus Torvalds-on
behalf of the Free Software Foundation, Stallman wisecracks,
“Giving the Linus Torvalds Award to the Free Software

Foundation is a bit like giving the Han Solo Award to the
Rebel Alliance.”

This time around, however, the comments fail to make
much of a media dent. Midway through the week, Red Hat,
Inc., a prominent GNU/Linux vendor, goes public. The news
merely confirms what many reporters such as myself already
suspect: “Linux” has become a Wall Street buzzword, much
like “e-commerce” and “dot-com” before it. With the stock
market approaching the Y2K rollover like a hyperbola
approaching its vertical asymptote, all talk of free software or
open source as a political phenomenon falls by the wayside.

Maybe that’s why, when LinuxWorld follows up its first two
shows with a third LinuxWorld show in August, 2000,
Stallman is conspicuously absent.

My second encounter with Stallman and his trademark gaze
comes shortly after that third LinuxWorld show. Hearing that
Stallman is going to be in Silicon Valley, I set up a lunch
interview in Palo Alto, California. The meeting place seems
ironic, not only because of the recent no-show but also
because of the overall backdrop. Outside of Redmond,
Washington, few cities offer a more direct testament to the
economic value of proprietary software. Curious to see how
Stallman, a man who has spent the better part of his life railing
against our culture’s predilection toward greed and selfishness,
is coping in a city where even garage-sized bungalows run in
the half-million-dollar price range, I make the drive down
from Oakland.

I follow the directions Stallman has given me, until I reach
the headquarters of Art.net, a nonprofit “virtual artists
collective.” Located in a hedge-shrouded house in the northern
corner of the city, the Art.net headquarters are refreshingly

run-down. Suddenly, the idea of Stallman lurking in the heart
of Silicon Valley doesn’t seem so strange after all.

I find Stallman sitting in a darkened room, tapping away on
his gray laptop computer. He looks up as soon as I enter the
room, giving me a full blast of his 200-watt gaze. When he
offers a soothing “Hello,” I offer a return greeting. Before the
words come out, however, his eyes have already shifted back
to the laptop screen.

“I’m just finishing an article on the spirit of hacking,”
Stallman says, fingers still tapping. “Take a look.”

I take a look. The room is dimly lit, and the text appears as
greenish-white letters on a black background, a reversal of the
color scheme used by most desktop word-processing
programs, so it takes my eyes a moment to adjust. When they
do, I find myself reading Stallman’s account of a recent meal
at a Korean restaurant. Before the meal, Stallman makes an
interesting discovery: the person setting the table has left six
chopsticks instead of the usual two in front of Stallman’s place
setting. Where most restaurant goers would have ignored the
redundant pairs, Stallman takes it as challenge: find a way to
use all six chopsticks at once. Like many software hacks, the
successful solution is both clever and silly at the same time.
Hence Stallman’s decision to use it as an illustration.

As I read the story, I feel Stallman watching me intently. I
look over to notice a proud but child-like half smile on his
face. When I praise the essay, my comment barely merits a
raised eyebrow.

“I’ll be ready to go in a moment,” he says.

Stallman goes back to tapping away at his laptop. The
laptop is gray and boxy, not like the sleek, modern laptops that
seemed to be a programmer favorite at the recent LinuxWorld

show. Above the keyboard rides a smaller, lighter keyboard, a
testament to Stallman’s aging hands. During the late 1980s,
when Stallman was putting in 70- and 80-hour work weeks
writing the first free software tools and programs for the GNU
Project, the pain in Stallman’s hands became so unbearable
that he had to hire a typist. Today, Stallman relies on a
keyboard whose keys require less pressure than a typical
computer keyboard.

Stallman has a tendency to block out all external stimuli
while working. Watching his eyes lock onto the screen and his
fingers dance, one quickly gets the sense of two old friends
locked in deep conversation.

The session ends with a few loud keystrokes and the slow
disassembly of the laptop.

“Ready for lunch?” Stallman asks.

We walk to my car. Pleading a sore ankle, Stallman limps
along slowly. Stallman blames the injury on a tendon in his
left foot. The injury is three years old and has gotten so bad
that Stallman, a huge fan of folk dancing, has been forced to
give up all dancing activities. “I love folk dancing inherently,”
Stallman laments. “Not being able to dance has been a tragedy
for me.”

Stallman’s body bears witness to the tragedy. Lack of
exercise has left Stallman with swollen cheeks and a pot belly
that was much less visible the year before. You can tell the
weight gain has been dramatic, because when Stallman walks,
he arches his back like a pregnant woman trying to
accommodate an unfamiliar load.

The walk is further slowed by Stallman’s willingness to stop
and smell the roses, literally. Spotting a particularly beautiful

blossom, he tickles the innermost petals with his prodigious
nose, takes a deep sniff and steps back with a contented sigh.

“Mmm, rhinophytophilia,“At the time, I thought Stallman
was referring to the flower’s scientific name. Months later, I
would learn that rhinophytophilia was in fact a humorous
reference to the activity, i.e., Stallman sticking his nose into a
flower and enjoying the moment. For another humorous
Stallman flower incident, visit:
http://www.stallman.org/texas.html he says, rubbing his back.

The drive to the restaurant takes less than three minutes.
Upon recommendation from Tim Ney, former executive
director of the Free Software Foundation, I have let Stallman
choose the restaurant. While some reporters zero in on
Stallman’s monk-like lifestyle, the truth is, Stallman is a
committed epicure when it comes to food. One of the fringe
benefits of being a traveling missionary for the free software
cause is the ability to sample delicious food from around the
world. “Visit almost any major city in the world, and chances
are Richard knows the best restaurant in town,” says Ney.
“Richard also takes great pride in knowing what’s on the menu
and ordering for the entire table.”

For today’s meal, Stallman has chosen a Cantonese-style
dim sum restaurant two blocks off University Avenue, Palo
Alto’s main drag. The choice is partially inspired by
Stallman’s recent visit to China, including a lecture stop in
Guangdong province, in addition to Stallman’s personal
aversion to spicier Hunanese and Szechuan cuisine. “I’m not a
big fan of spicy,” Stallman admits.

We arrive a few minutes after 11 a.m. and find ourselves
already subject to a 20-minute wait. Given the hacker aversion

to lost time, I hold my breath momentarily, fearing an outburst.
Stallman, contrary to expectations, takes the news in stride.

“It’s too bad we couldn’t have found somebody else to join
us,” he tells me. “It’s always more fun to eat with a group of
people.”

During the wait, Stallman practices a few dance steps. His
moves are tentative but skilled. We discuss current events.
Stallman says his only regret about not attending LinuxWorld
was missing out on a press conference announcing the launch
of the GNOME Foundation. Backed by Sun Microsystems and
IBM, the foundation is in many ways a vindication for
Stallman, who has long championed that free software and
free-market economics need not be mutually exclusive.
Nevertheless, Stallman remains dissatisfied by the message
that came out.

“The way it was presented, the companies were talking
about Linux with no mention of the GNU Project at all,”
Stallman says.

Such disappointments merely contrast the warm response
coming from overseas, especially Asia, Stallman notes. A
quick glance at the Stallman 2000 travel itinerary bespeaks the
growing popularity of the free software message. Between
recent visits to India, China, and Brazil, Stallman has spent 12
of the last 115 days on United States soil. His travels have
given him an opportunity to see how the free software concept
translates into different languages of cultures.

“In India many people are interested in free software,
because they see it as a way to build their computing
infrastructure without spending a lot of money,” Stallman
says. “In China, the concept has been much slower to catch on.
Comparing free software to free speech is harder to do when

you don’t have any free speech. Still, the level of interest in
free software during my last visit was profound.”

The conversation shifts to Napster, the San Mateo,
California software company, which has become something of
a media cause cÈlËbre in recent months. The company
markets a controversial software tool that lets music fans
browse and copy the music files of other music fans. Thanks
to the magnifying powers of the Internet, this so-called “peer-
to-peer” program has evolved into a de facto online juke box,
giving ordinary music fans a way to listen to MP3 music files
over the computer without paying a royalty or fee, much to
record companies’ chagrin.

Although based on proprietary software, the Napster system
draws inspiration from the long-held Stallman contention that
once a work enters the digital realm-in other words, once
making a copy is less a matter of duplicating sounds or
duplicating atoms and more a matter of duplicating
information-the natural human impulse to share a work
becomes harder to restrict. Rather than impose additional
restrictions, Napster execs have decided to take advantage of
the impulse. Giving music listeners a central place to trade
music files, the company has gambled on its ability to steer the
resulting user traffic toward other commercial opportunities.

The sudden success of the Napster model has put the fear in
traditional record companies, with good reason. Just days
before my Palo Alto meeting with Stallman, U.S. District
Court Judge Marilyn Patel granted a request filed by the
Recording Industry Association of America for an injunction
against the file-sharing service. The injunction was
subsequently suspended by the U.S. Ninth District Court of
Appeals, but by early 2001, the Court of Appeals, too, would
find the San Mateo-based company in breach of copyright

law,5 a decision RIAA spokesperson Hillary Rosen would
later proclaim proclaim a “clear victory for the creative
content community and the legitimate online marketplace.“See
“A Clear Victory for Recording Industry in Napster Case,”
RIAA press release (February 12, 2001).
http://www.riaa.com/PR_story.cfm?id=372

For hackers such as Stallman, the Napster business model is
scary in different ways. The company’s eagerness to
appropriate time-worn hacker principles such as file sharing
and communal information ownership, while at the same time
selling a service based on proprietary software, sends a
distressing mixed message. As a person who already has a
hard enough time getting his own carefully articulated
message into the media stream, Stallman is understandably
reticent when it comes to speaking out about the company.
Still, Stallman does admit to learning a thing or two from the
social side of the Napster phenomenon.

“Before Napster, I thought it might be OK for people to
privately redistribute works of entertainment,” Stallman says.
“The number of people who find Napster useful, however,
tells me that the right to redistribute copies not only on a
neighbor-to-neighbor basis, but to the public at large, is
essential and therefore may not be taken away.”

No sooner does Stallman say this than the door to the
restaurant swings open and we are invited back inside by the
host. Within a few seconds, we are seated in a side corner of
the restaurant next to a large mirrored wall.

The restaurant’s menu doubles as an order form, and
Stallman is quickly checking off boxes before the host has
even brought water to the table. “Deep-fried shrimp roll

wrapped in bean-curd skin,” Stallman reads. “Bean-curd skin.
It offers such an interesting texture. I think we should get it.”

This comment leads to an impromptu discussion of Chinese
food and Stallman’s recent visit to China. “The food in China
is utterly exquisite,” Stallman says, his voice gaining an edge
of emotion for the first time this morning. “So many different
things that I’ve never seen in the U.S., local things made from
local mushrooms and local vegetables. It got to the point
where I started keeping a journal just to keep track of every
wonderful meal.”

The conversation segues into a discussion of Korean
cuisine. During the same June, 2000, Asian tour, Stallman paid
a visit to South Korea. His arrival ignited a mini-firestorm in
the local media thanks to a Korean software conference
attended by Microsoft founder and chairman Bill Gates that
same week. Next to getting his photo above Gates’s photo on
the front page of the top Seoul newspaper, Stallman says the
best thing about the trip was the food. “I had a bowl of naeng
myun, which is cold noodles,” says Stallman. “These were a
very interesting feeling noodle. Most places don’t use quite the
same kind of noodles for your naeng myun, so I can say with
complete certainty that this was the most exquisite naeng
myun I ever had.”

The term “exquisite” is high praise coming from Stallman. I
know this, because a few moments after listening to Stallman
rhapsodize about naeng myun, I feel his laser-beam eyes
singeing the top of my right shoulder.

“There is the most exquisite woman sitting just behind
you,” Stallman says.

I turn to look, catching a glimpse of a woman’s back. The
woman is young, somewhere in her mid-20s, and is wearing a

white sequinned dress. She and her male lunch companion are
in the final stages of paying the check. When both get up from
the table to leave the restaurant, I can tell without looking,
because Stallman’s eyes suddenly dim in intensity.

“Oh, no,” he says. “They’re gone. And to think, I’ll
probably never even get to see her again.”

After a brief sigh, Stallman recovers. The moment gives me
a chance to discuss Stallman’s reputation vis-ý-vis the fairer
sex. The reputation is a bit contradictory at times. A number of
hackers report Stallman’s predilection for greeting females
with a kiss on the back of the hand.See Mae Ling Mak, “Mae
Ling’s Story” (December 17, 1998).

http://www.crackmonkey.org/pipermail/crackmonkey/1998q
4/003006.htm
So far, Mak is the only person I’ve found willing to
speak on the record in regard to this practice,
although I’ve heard this from a few other female
sources. Mak, despite expressing initial revulsion at
it, later managed to put aside her misgivings and dance
with Stallman at a 1999 LinuxWorld show.
http://www.linux.com/interact/potd.phtml?potd_id=44
 A May 26, 2000 Salon.com article, meanwhile, portrays
Stallman as a bit of a hacker lothario. Documenting the
free software-free love connection, reporter Annalee
Newitz presents Stallman as rejecting traditional
family values, telling her, “I believe in love, but not
monogamy.“See Annalee Newitz, “If Code is Free Why Not
Me?”
Salon.com (May 26, 2000).

Stallman lets his menu drop a little when I bring this up.
“Well, most men seem to want sex and seem to have a rather

contemptuous attitude towards women,” he says. “Even
women they’re involved with. I can’t understand it at all.”

I mention a passage from the 1999 book Open Sources in
which Stallman confesses to wanting to name the ill-fated
GNU kernel after a girlfriend at the time. The girlfriend’s
name was Alix, a name that fit perfectly with the Unix
developer convention of putting an “x” at the end of any new
kernel name-e.g., “Linux.” Because the woman was a Unix
system administrator, Stallman says it would have been an
even more touching tribute. Unfortunately, Stallman notes, the
kernel project’s eventual main developer renamed the kernel
HURD.See Richard Stallman, “The GNU Operating System
and the Free Software Movement,” Open Sources (O’Reilly &
Associates, Inc., 1999): 65. Although Stallman and the
girlfriend later broke up, the story triggers an automatic
question: for all the media imagery depicting him as a wild-
eyed fanatic, is Richard Stallman really just a hopeless
romantic, a wandering Quixote tilting at corporate windmills
in an effort to impress some as-yet-unidentified Dulcinea?

“I wasn’t really trying to be romantic,” Stallman says,
recalling the Alix story. “It was more of a teasing thing. I
mean, it was romantic, but it was also teasing, you know? It
would have been a delightful surprise.”

For the first time all morning, Stallman smiles. I bring up
the hand kissing. “Yes, I do do that,” Stallman says. “I’ve
found it’s a way of offering some affection that a lot of women
will enjoy. It’s a chance to give some affection and to be
appreciated for it.”

Affection is a thread that runs clear through Richard
Stallman’s life, and he is painfully candid about it when
questions arise. “There really hasn’t been much affection in

my life, except in my mind,” he says. Still, the discussion
quickly grows awkward. After a few one-word replies,
Stallman finally lifts up his menu, cutting off the inquiry.

“Would you like some shimai?” he asks.

When the food comes out, the conversation slaloms between
the arriving courses. We discuss the oft-noted hacker affection
for Chinese food, the weekly dinner runs into Boston’s
Chinatown district during Stallman’s days as a staff
programmer at the AI Lab, and the underlying logic of the
Chinese language and its associated writing system. Each
thrust on my part elicits a well-informed parry on Stallman’s
part.

“I heard some people speaking Shanghainese the last time I
was in China,” Stallman says. “It was interesting to hear. It
sounded quite different [from Mandarin]. I had them tell me
some cognate words in Mandarin and Shanghainese. In some
cases you can see the resemblance, but one question I was
wondering about was whether tones would be similar. They’re
not. That’s interesting to me, because there’s a theory that the
tones evolved from additional syllables that got lost and
replaced. Their effect survives in the tone. If that’s true, and
I’ve seen claims that that happened within historic times, the
dialects must have diverged before the loss of these final
syllables.”

The first dish, a plate of pan-fried turnip cakes, has arrived.
Both Stallman and I take a moment to carve up the large
rectangular cakes, which smell like boiled cabbage but taste
like potato latkes fried in bacon.

I decide to bring up the outcast issue again, wondering if
Stallman’s teenage years conditioned him to take unpopular
stands, most notably his uphill battle since 1994 to get

computer users and the media to replace the popular term
“Linux” with “GNU/Linux.”

“I believe it did help me,” Stallman says, chewing on a
dumpling. “I have never understood what peer pressure does
to other people. I think the reason is that I was so hopelessly
rejected that for me, there wasn’t anything to gain by trying to
follow any of the fads. It wouldn’t have made any difference.
I’d still be just as rejected, so I didn’t try.”

Stallman points to his taste in music as a key example of his
contrarian tendencies. As a teenager, when most of his high
school classmates were listening to Motown and acid rock,
Stallman preferred classical music. The memory leads to a rare
humorous episode from Stallman’s middle-school years.
Following the Beatles’ 1964 appearance on the Ed Sullivan
Show, most of Stallman’s classmates rushed out to purchase
the latest Beatles albums and singles. Right then and there,
Stallman says, he made a decision to boycott the Fab Four.

“I liked some of the pre-Beatles popular music,” Stallman
says. “But I didn’t like the Beatles. I especially disliked the
wild way people reacted to them. It was like: who was going
to have a Beatles assembly to adulate the Beatles the most?”

When his Beatles boycott failed to take hold, Stallman
looked for other ways to point out the herd-mentality of his
peers. Stallman says he briefly considered putting together a
rock band himself dedicated to satirizing the Liverpool group.

“I wanted to call it Tokyo Rose and the Japanese Beetles.”

Given his current love for international folk music, I ask
Stallman if he had a similar affinity for Bob Dylan and the
other folk musicians of the early 1960s. Stallman shakes his
head. “I did like Peter, Paul and Mary,” he says. “That reminds
me of a great filk.”

When I ask for a definition of “filk,” Stallman explains the
concept. A filk, he says, is a popular song whose lyrics have
been replaced with parody lyrics. The process of writing a filk
is called filking, and it is a popular activity among hackers and
science-fiction aficionados. Classic filks include “On Top of
Spaghetti,” a rewrite of “On Top of Old Smokey,” and “Yoda,”
filk-master “Weird” Al Yankovic’s Star Wars-oriented
rendition of the Kinks tune, “Lola.”

Stallman asks me if I would be interested in hearing the folk
filk. As soon as I say yes, Stallman’s voice begins singing in
an unexpectedly clear tone: How much wood could a
woodchuck chuck,If a woodchuck could chuck wood?How
many poles could a polak lock,If a polak could lock poles?
How many knees could a negro grow,If a negro could grow
knees?The answer, my dear, is stick it in your ear.The answer
is to stick it in your ear. The singing ends, and Stallman’s lips
curl into another child-like half smile. I glance around at the
nearby tables. The Asian families enjoying their Sunday lunch
pay little attention to the bearded alto in their midst.For more
Stallman filks, visit http://www.stallman.org/doggerel.html. To
hear Stallman singing “The Free Software Song,” visit
http://www.gnu.org/music/free-software-song.html. After a
few moments of hesitation, I finally smile too.

“Do you want that last cornball?” Stallman asks, eyes
twinkling. Before I can screw up the punch line, Stallman
grabs the corn-encrusted dumpling with his two chopsticks
and lifts it proudly. “Maybe I’m the one who should get the
cornball,” he says.

The food gone, our conversation assumes the dynamics of a
normal interview. Stallman reclines in his chair and cradles a
cup of tea in his hands. We resume talking about Napster and
its relation to the free software movement. Should the

principles of free software be extended to similar arenas such
as music publishing? I ask.

“It’s a mistake to transfer answers from one thing to
another,” says Stallman, contrasting songs with software
programs. “The right approach is to look at each type of work
and see what conclusion you get.”

When it comes to copyrighted works, Stallman says he
divides the world into three categories. The first category
involves “functional” works-e.g., software programs,
dictionaries, and textbooks. The second category involves
works that might best be described as “testimonial”-e.g.,
scientific papers and historical documents. Such works serve a
purpose that would be undermined if subsequent readers or
authors were free to modify the work at will. The final
category involves works of personal expression-e.g., diaries,
journals, and autobiographies. To modify such documents
would be to alter a person’s recollections or point of view-
action Stallman considers ethically unjustifiable.

Of the three categories, the first should give users the
unlimited right to make modified versions, while the second
and third should regulate that right according to the will of the
original author. Regardless of category, however, the freedom
to copy and redistribute noncommercially should remain
unabridged at all times, Stallman insists. If that means giving
Internet users the right to generate a hundred copies of an
article, image, song, or book and then email the copies to a
hundred strangers, so be it. “It’s clear that private occasional
redistribution must be permitted, because only a police state
can stop that,” Stallman says. “It’s antisocial to come between
people and their friends. Napster has convinced me that we
also need to permit, must permit, even noncommercial

redistribution to the public for the fun of it. Because so many
people want to do that and find it so useful.”

When I ask whether the courts would accept such a
permissive outlook, Stallman cuts me off.

“That’s the wrong question,” he says. “I mean now you’ve
changed the subject entirely from one of ethics to one of
interpreting laws. And those are two totally different questions
in the same field. It’s useless to jump from one to the other.
How the courts would interpret the existing laws is mainly in a
harsh way, because that’s the way these laws have been bought
by publishers.”

The comment provides an insight into Stallman’s political
philosophy: just because the legal system currently backs up
businesses’ ability to treat copyright as the software equivalent
of land title doesn’t mean computer users have to play the
game according to those rules. Freedom is an ethical issue, not
a legal issue. “I’m looking beyond what the existing laws are
to what they should be,” Stallman says. “I’m not trying to draft
legislation. I’m thinking about what should the law do? I
consider the law prohibiting the sharing of copies with your
friend the moral equivalent of Jim Crow. It does not deserve
respect.”

The invocation of Jim Crow prompts another question. How
much influence or inspiration does Stallman draw from past
political leaders? Like the civil-rights movement of the 1950s
and 1960s, his attempt to drive social change is based on an
appeal to timeless values: freedom, justice, and fair play.

Stallman divides his attention between my analogy and a
particularly tangled strand of hair. When I stretch the analogy
to the point where I’m comparing Stallman with Dr. Martin

Luther King, Jr., Stallman, after breaking off a split end and
popping it into his mouth, cuts me off.

“I’m not in his league, but I do play the same game,” he
says, chewing.

I suggest Malcolm X as another point of comparison. Like
the former Nation of Islam spokesperson, Stallman has built
up a reputation for courting controversy, alienating potential
allies, and preaching a message favoring self-sufficiency over
cultural integration.

Chewing on another split end, Stallman rejects the
comparison. “My message is closer to King’s message,” he
says. “It’s a universal message. It’s a message of firm
condemnation of certain practices that mistreat others. It’s not
a message of hatred for anyone. And it’s not aimed at a narrow
group of people. I invite anyone to value freedom and to have
freedom.”

Even so, a suspicious attitude toward political alliances
remains a fundamental Stallman character trait. In the case of
his well-publicized distaste for the term “open source,” the
unwillingness to participate in recent coalition-building
projects seems understandable. As a man who has spent the
last two decades stumping on the behalf of free software,
Stallman’s political capital is deeply invested in the term. Still,
comments such as the “Han Solo” wisecrack at the 1999
LinuxWorld have only reinforced the Stallman’s reputation in
the software industry as a disgrunted mossback unwilling to
roll with political or marketing trends.

“I admire and respect Richard for all the work he’s done,”
says Red Hat president Robert Young, summing up Stallman’s
paradoxical political nature. “My only critique is that
sometimes Richard treats his friends worse than his enemies.”

Stallman’s unwillingness to seek alliances seems equally
perplexing when you consider his political interests outside of
the free software movement. Visit Stallman’s offices at MIT,
and you instantly find a clearinghouse of left-leaning news
articles covering civil-rights abuses around the globe. Visit his
web site, and you’ll find diatribes on the Digital Millennium
Copyright Act, the War on Drugs, and the World Trade
Organization.

Given his activist tendencies, I ask, why hasn’t Stallman
sought a larger voice? Why hasn’t he used his visibility in the
hacker world as a platform to boost rather than reduce his
political voice.

Stallman lets his tangled hair drop and contemplates the
question for a moment.

“I hesitate to exaggerate the importance of this little puddle
of freedom,” he says. “Because the more well-known and
conventional areas of working for freedom and a better society
are tremendously important. I wouldn’t say that free software
is as important as they are. It’s the responsibility I undertook,
because it dropped in my lap and I saw a way I could do
something about it. But, for example, to end police brutality, to
end the war on drugs, to end the kinds of racism we still have,
to help everyone have a comfortable life, to protect the rights
of people who do abortions, to protect us from theocracy, these
are tremendously important issues, far more important than
what I do. I just wish I knew how to do something about
them.”

Once again, Stallman presents his political activity as a
function of personal confidence. Given the amount of time it
has taken him to develop and hone the free software
movement’s core tenets, Stallman is hesitant to jump aboard

any issues or trends that might transport him into uncharted
territory.

“I wish I knew I how to make a major difference on those
bigger issues, because I would be tremendously proud if I
could, but they’re very hard and lots of people who are
probably better than I am have been working on them and
have gotten only so far,” he says. “But as I see it, while other
people were defending against these big visible threats, I saw
another threat that was unguarded. And so I went to defend
against that threat. It may not be as big a threat, but I was the
only one there.”

Chewing a final split end, Stallman suggests paying the
check. Before the waiter can take it away, however, Stallman
pulls out a white-colored dollar bill and throws it on the pile.
The bill looks so clearly counterfeit, I can’t help but pick it up
and read it. Sure enough, it is counterfeit. Instead of bearing
the image of a George Washington or Abe Lincoln, the bill’s
front side bears the image of a cartoon pig. Instead of the
United States of America, the banner above the pig reads
“United Swines of Avarice.” The bill is for zero dollars, and
when the waiter picks up the money, Stallman makes sure to
tug on his sleeve.

“I added an extra zero to your tip,” Stallman says, yet
another half smile creeping across his lips.

The waiter, uncomprehending or fooled by the look of the
bill, smiles and scurries away.

“I think that means we’re free to go,” Stallman says.

The Emacs Commune

The AI Lab of the 1970s was by all accounts a special place.
Cutting-edge projects and top-flight researchers gave it an

esteemed position in the world of computer science. The
internal hacker culture and its anarchic policies lent a
rebellious mystique as well. Only later, when many of the lab’s
scientists and software superstars had departed, would hackers
fully realize the unique and ephemeral world they had once
inhabited.

“It was a bit like the Garden of Eden,” says Stallman,
summing up the lab and its software-sharing ethos in a 1998
Forbes article. “It hadn’t occurred to us not to cooperate.“See
Josh McHugh, “For the Love of Hacking,” Forbes (August 10,
1998).
http://www.forbes.com/forbes/1998/0810/6203094a.html

Such mythological descriptions, while extreme, underline
an important fact. The ninth floor of 545 Tech Square was
more than a workplace for many. For hackers such as
Stallman, it was home.

The word “home” is a weighted term in the Stallman
lexicon. In a pointed swipe at his parents, Stallman, to this day,
refuses to acknowledge any home before Currier House, the
dorm he lived in during his days at Harvard. He has also been
known to describe leaving that home in tragicomic terms.
Once, while describing his years at Harvard, Stallman said his
only regret was getting kicked out. It wasn’t until I asked
Stallman what precipitated his ouster, that I realized I had
walked into a classic Stallman setup line.

“At Harvard they have this policy where if you pass too
many classes they ask you to leave,” Stallman says.

With no dorm and no desire to return to New York, Stallman
followed a path blazed by Greenblatt, Gosper, Sussman, and
the many other hackers before him. Enrolling at MIT as a grad
student, Stallman rented an apartment in nearby Cambridge

but soon viewed the AI Lab itself as his de facto home. In a
1986 speech, Stallman recalled his memories of the AI Lab
during this period: I may have done a little bit more living at
the lab than most people, because every year or two for some
reason or other I’d have no apartment and I would spend a few
months living at the lab. And I’ve always found it very
comfortable, as well as nice and cool in the summer. But it
was not at all uncommon to find people falling asleep at the
lab, again because of their enthusiasm; you stay up as long as
you possibly can hacking, because you just don’t want to stop.
And then when you’re completely exhausted, you climb over
to the nearest soft horizontal surface. A very informal
atmosphere.See Stallman (1986). The lab’s home-like
atmosphere could be a problem at times. What some saw as a
dorm, others viewed as an electronic opium den. In the 1976
book Computer Power and Human Reason, MIT researcher
Joseph Weizenbaum offered a withering critique of the ”
computer bum,” Weizenbaum’s term for the hackers who
populated computer rooms such as the AI Lab. “Their rumpled
clothes, their unwashed hair and unshaved faces, and their
uncombed hair all testify that they are oblivious to their bodies
and to the world in which they move,” Weizenbaum wrote.
“[Computer bums] exist, at least when so engaged, only
through and for the computers.“See Joseph Weizenbaum,
Computer Power and Human Reason: From Judgment to
Calculation (W. H. Freeman, 1976): 116.

Almost a quarter century after its publication, Stallman still
bristles when hearing Weizenbaum’s “computer bum”
description, discussing it in the present tense as if Weizenbaum
himself was still in the room. “He wants people to be just
professionals, doing it for the money and wanting to get away

from it and forget about it as soon as possible,” Stallman says.
“What he sees as a normal state of affairs, I see as a tragedy.”

Hacker life, however, was not without tragedy. Stallman
characterizes his transition from weekend hacker to full-time
AI Lab denizen as a series of painful misfortunes that could
only be eased through the euphoria of hacking. As Stallman
himself has said, the first misfortune was his graduation from
Harvard. Eager to continue his studies in physics, Stallman
enrolled as a graduate student at MIT. The choice of schools
was a natural one. Not only did it give Stallman the chance to
follow the footsteps of great MIT alumni: William Shockley
(‘36), Richard P. Feynman (‘39), and Murray Gell-Mann (‘51),
it also put him two miles closer to the AI Lab and its new
PDP-10 computer. “My attention was going toward
programming, but I still thought, well, maybe I can do both,”
Stallman says.

Toiling in the fields of graduate-level science by day and
programming in the monastic confines of the AI Lab by night,
Stallman tried to achieve a perfect balance. The fulcrum of this
geek teeter-totter was his weekly outing with the folk-dance
troupe, his one social outlet that guaranteed at least a modicum
of interaction with the opposite sex. Near the end of that first
year at MIT, however, disaster struck. A knee injury forced
Stallman to drop out of the troupe. At first, Stallman viewed
the injury as a temporary problem, devoting the spare time he
would have spent dancing to working at the AI Lab even
more. By the end of the summer, when the knee still ached and
classes reconvened, Stallman began to worry. “My knee
wasn’t getting any better,” Stallman recalls, “which meant I
had to stop dancing completely. I was heartbroken.”

With no dorm and no dancing, Stallman’s social universe
imploded. Like an astronaut experiencing the aftereffects of

zero-gravity, Stallman found that his ability to interact with
nonhackers, especially female nonhackers, had atrophied
significantly. After 16 weeks in the AI Lab, the self confidence
he’d been quietly accumulating during his 4 years at Harvard
was virtually gone.

“I felt basically that I’d lost all my energy,” Stallman
recalls. “I’d lost my energy to do anything but what was most
immediately tempting. The energy to do something else was
gone. I was in total despair.”

Stallman retreated from the world even further,
focusing entirely on his work at the AI Lab. By
October, 1975, he dropped out of MIT, never to go back.
Software hacking, once a hobby, had become his calling.

Looking back on that period, Stallman sees the transition
from full-time student to full-time hacker as inevitable. Sooner
or later, he believes, the siren’s call of computer hacking
would have overpowered his interest in other professional
pursuits. “With physics and math, I could never figure out a
way to contribute,” says Stallman, recalling his struggles prior
to the knee injury. “I would have been proud to advance either
one of those fields, but I could never see a way to do that. I
didn’t know where to start. With software, I saw right away
how to write things that would run and be useful. The pleasure
of that knowledge led me to want to do it more.”

Stallman wasn’t the first to equate hacking with pleasure.
Many of the hackers who staffed the AI Lab boasted similar,
incomplete academic rÈsumÈs. Most had come in pursuing
degrees in math or electrical engineering only to surrender
their academic careers and professional ambitions to the sheer
exhilaration that came with solving problems never before
addressed. Like St. Thomas Aquinas, the scholastic known for

working so long on his theological summae that he sometimes
achieved spiritual visions, hackers reached transcendent
internal states through sheer mental focus and physical
exhaustion. Although Stallman shunned drugs, like most
hackers, he enjoyed the “high” that came near the end of a 20-
hour coding bender.

Perhaps the most enjoyable emotion, however, was the
sense of personal fulfillment. When it came to hacking,
Stallman was a natural. A childhood’s worth of late-night
study sessions gave him the ability to work long hours with
little sleep. As a social outcast since age 10, he had little
difficulty working alone. And as a mathematician with built-in
gift for logic and foresight, Stallman possessed the ability to
circumvent design barriers that left most hackers spinning
their wheels.

“He was special,” recalls Gerald Sussman, an MIT faculty
member and former AI Lab researcher. Describing Stallman as
a “clear thinker and a clear designer,” Sussman employed
Stallman as a research-project assistant beginning in 1975. The
project was complex, involving the creation of an AI program
that could analyze circuit diagrams. Not only did it involve an
expert’s command of Lisp, a programming language built
specifically for AI applications, but it also required an
understanding of how a human might approach the same task.

When he wasn’t working on official projects such as
Sussman’s automated circuit-analysis program, Stallman
devoted his time to pet projects. It was in a hacker’s best
interest to improve the lab’s software infrastructure, and one of
Stallman’s biggest pet projects during this period was the lab’s
editor program TECO.

The story of Stallman’s work on TECO during the 1970s is
inextricably linked with Stallman’s later leadership of the free
software movement. It is also a significant stage in the history
of computer evolution, so much so that a brief recapitulation
of that evolution is necessary. During the 1950s and 1960s,
when computers were first appearing at universities, computer
programming was an incredibly abstract pursuit. To
communicate with the machine, programmers created a series
of punch cards, with each card representing an individual
software command. Programmers would then hand the cards
over to a central system administrator who would then insert
them, one by one, into the machine, waiting for the machine to
spit out a new set of punch cards, which the programmer
would then decipher as output. This process, known as ” batch
processing,” was cumbersome and time consuming. It was
also prone to abuses of authority. One of the motivating factors
behind hackers’ inbred aversion to centralization was the
power held by early system operators in dictating which jobs
held top priority.

In 1962, computer scientists and hackers involved in MIT’s
Project MAC, an early forerunner of the AI Lab, took steps to
alleviate this frustration. Time-sharing, originally known as
“time stealing,” made it possible for multiple programs to take
advantage of a machine’s operational capabilities. Teletype
interfaces also made it possible to communicate with a
machine not through a series of punched holes but through
actual text. A programmer typed in commands and read the
line-by-line output generated by the machine.

During the late 1960s, interface design made additional
leaps. In a famous 1968 lecture, Doug Engelbart, a scientist
then working at the Stanford Research Institute, unveiled a
prototype of the modern graphical interface. Rigging up a

television set to the computer and adding a pointer device
which Engelbart dubbed a ” mouse,” the scientist created a
system even more interactive than the time-sharing system
developed a MIT. Treating the video display like a high-speed
printer, Engelbart’s system gave a user the ability to move the
cursor around the screen and see the cursor position updated
by the computer in real time. The user suddenly had the ability
to position text anywhere on the screen.

Such innovations would take another two decades to make
their way into the commercial marketplace. Still, by the 1970s,
video screens had started to replace teletypes as display
terminals, creating the potential for full-screen-as opposed to
line-by-line-editing capabilities.

One of the first programs to take advantage of this full-
screen capability was the MIT AI Lab’s TECO. Short for Text
Editor and COrrector, the program had been upgraded by
hackers from an old teletype line editor for the lab’s PDP-6
machine.ccording to the Jargon File, TECO’s name originally
stood for Tape Editor and Corrector.

TECO was a substantial improvement over old editors, but
it still had its drawbacks. To create and edit a document, a
programmer had to enter a series of software commands
specifying each edit. It was an abstract process. Unlike modern
word processors, which update text with each keystroke,
TECO demanded that the user enter an extended series of
editing instructions followed by an “end of command”
sequence just to change the text.Over time, a hacker grew
proficient enough to write entire documents in edit mode, but
as Stallman himself would later point out, the process required
“a mental skill like that of blindfold chess.“See Richard
Stallman, “EMACS: The Extensible, Customizable, Display
Editor,” AI Lab Memo (1979). An updated HTML version of

this memo, from which I am quoting, is available at
http://www.gnu.org/software/emacs/emacs-paper.html.

To facilitate the process, AI Lab hackers had built a system
that displayed both the “source” and “display” modes on a
split screen. Despite this innovative hack, switching from
mode to mode was still a nuisance.

TECO wasn’t the only full-screen editor floating around the
computer world at this time. During a visit to the Stanford
Artificial Intelligence Lab in 1976, Stallman encountered an
edit program named E. The program contained an internal
feature, which allowed a user to update display text after each
command keystroke. In the language of 1970s programming,
E was one of the first rudimentary WYSIWYG editors. Short
for “what you see is what you get,” WYSIWYG meant that a
user could manipulate the file by moving through the
displayed text, as opposed to working through a back-end
editor program.“See Richard Stallman, “Emacs the Full Screen
Editor” (1987). http://www.lysator.liu.se/history/garb/txt/87-1-
emacs.txt

Impressed by the hack, Stallman looked for ways to expand
TECO’s functionality in similar fashion upon his return to
MIT. He found a TECO feature called Control-R, written by
Carl Mikkelson and named after the two-key combination that
triggered it. Mikkelson’s hack switched TECO from its usual
abstract command-execution mode to a more intuitive
keystroke-by-keystroke mode. Stallman revised the feature in
a subtle but significant way. He made it possible to trigger
other TECO command strings, or ” macros,” using other, two-
key combinations. Where users had once entered command
strings and discarded them after entering then, Stallman’s hack
made it possible to save macro tricks on file and call them up
at will. Mikkelson’s hack had raised TECO to the level of a

WYSIWYG editor. Stallman’s hack had raised it to the level of
a user-programmable WYSIWYG editor. “That was the real
breakthrough,” says Guy Steele, a fellow AI Lab hacker at the
time.

By Stallman’s own recollection, the macro hack touched off
an explosion of further innovation. “Everybody and his brother
was writing his own collection of redefined screen-editor
commands, a command for everything he typically liked to
do,” Stallman would later recall. “People would pass them
around and improve them, making them more powerful and
more general. The collections of redefinitions gradually
became system programs in their own right.”

So many people found the macro innovations useful and had
incorporated it into their own TECO programs that the TECO
editor had become secondary to the macro mania it inspired.
“We started to categorize it mentally as a programming
language rather than as an editor,” Stallman says. Users were
experiencing their own pleasure tweaking the software and
trading new ideas.

Two years after the explosion, the rate of innovation began
to exhibit dangerous side effects. The explosive growth had
provided an exciting validation of the collaborative hacker
approach, but it had also led to over-complexity. “We had a
Tower of Babel effect,” says Guy Steele.

The effect threatened to kill the spirit that had created it,
Steele says. Hackers had designed ITS to facilitate
programmers’ ability to share knowledge and improve each
other’s work. That meant being able to sit down at another
programmer’s desk, open up a programmer’s work and make
comments and modifications directly within the software.
“Sometimes the easiest way to show somebody how to

program or debug something was simply to sit down at the
terminal and do it for them,” explains Steele.

The macro feature, after its second year, began to foil this
capability. In their eagerness to embrace the new full-screen
capabilities, hackers had customized their versions of TECO to
the point where a hacker sitting down at another hacker’s
terminal usually had to spend the first hour just figuring out
what macro commands did what.

Frustrated, Steele took it upon himself to the solve the
problem. He gathered together the four different macro
packages and began assembling a chart documenting the most
useful macro commands. In the course of implementing the
design specified by the chart, Steele says he attracted
Stallman’s attention.

“He started looking over my shoulder, asking me what I was
doing,” recalls Steele.

For Steele, a soft-spoken hacker who interacted with
Stallman infrequently, the memory still sticks out. Looking
over another hacker’s shoulder while he worked was a
common activity at the AI Lab. Stallman, the TECO
maintainer at the lab, deemed Steele’s work “interesting” and
quickly set off to complete it.

“As I like to say, I did the first 0.001 percent of the
implementation, and Stallman did the rest,” says Steele with a
laugh.

The project’s new name, Emacs, came courtesy of Stallman.
Short for “editing macros,” it signified the evolutionary
transcendence that had taken place during the macros
explosion two years before. It also took advantage of a gap in
the software programming lexicon. Noting a lack of programs
on ITS starting with the letter “E,” Stallman chose Emacs,

making it possible to reference the program with a single
letter. Once again, the hacker lust for efficiency had left its
mark.

In the course of developing a standard system of macro
commands, Stallman and Steele had to traverse a political
tightrope. In creating a standard program, Stallman was in
clear violation of the fundamental hacker tenet-“promote
decentralization.” He was also threatening to hobble the very
flexibility that had fueled TECO’s explosive innovation in the
first place.

“On the one hand, we were trying to make a uniform
command set again; on the other hand, we wanted to keep it
open ended, because the programmability was important,”
recalls Steele.

To solve the problem, Stallman, Steele, and fellow hackers
David Moon and Dan Weinreib limited their standardization
effort to the WYSIWYG commands that controlled how text
appeared on-screen. The rest of the Emacs effort would be
devoted to retaining the program’s Tinker Toy-style
extensibility.

Stallman now faced another conundrum: if users made
changes but didn’t communicate those changes back to the rest
of the community, the Tower of Babel effect would simply
emerge in other places. Falling back on the hacker doctrine of
sharing innovation, Stallman embedded a statement within the
source code that set the terms of use. Users were free to
modify and redistribute the code on the condition that they
gave back all the extensions they made. Stallman dubbed it the
” Emacs Commune.” Just as TECO had become more than a
simple editor, Emacs had become more than a simple software
program. To Stallman, it was a social contract. In an early

memo documenting the project, Stallman spelled out the
contract terms. “EMACS,” he wrote, “was distributed on a
basis of communal sharing, which means that all
improvements must be given back to me to be incorporated
and distributed.“See Stallman (1979): #SEC34.

Not everybody accepted the contract. The explosive
innovation continued throughout the decade, resulting in a host
of Emacs-like programs with varying degrees of cross-
compatibility. A few cited their relation to Stallman’s original
Emacs with humorously recursive names: Sine (Sine is not
Emacs), Eine (Eine is not Emacs), and Zwei (Zwei was Eine
initially). As a devoted exponent of the hacker ethic, Stallman
saw no reason to halt this innovation through legal harassment.
Still, the fact that some people would so eagerly take software
from the community chest, alter it, and slap a new name on the
resulting software displayed a stunning lack of courtesy.

Such rude behavior was reflected against other, unsettling
developments in the hacker community. Brian Reid’s 1979
decision to embed “time bombs” in Scribe, making it possible
for Unilogic to limit unpaid user access to the software, was a
dark omen to Stallman. “He considered it the most Nazi thing
he ever saw in his life,” recalls Reid. Despite going on to later
Internet fame as the cocreator of the Usenet alt heirarchy, Reid
says he still has yet to live down that 1979 decision, at least in
Stallman’s eyes. “He said that all software should be free and
the prospect of charging money for software was a crime
against humanity.“In a 1996 interview with online magazine
MEME , Stallman cited Scribe’s sale as irksome, but hesitated
to mention Reid by name. “The problem was nobody censured
or punished this student for what he did,” Stallman said. “The
result was other people got tempted to follow his example.”
See MEME 2.04. http://memex.org/meme2-04.html

Although Stallman had been powerless to head off Reid’s
sale, he did possess the ability to curtail other forms of
behavior deemed contrary to the hacker ethos. As central
source-code maintainer for the Emacs “commune,” Stallman
began to wield his power for political effect. During his final
stages of conflict with the administrators at the Laboratory for
Computer Science over password systems, Stallman initiated a
software ” strike,“See Steven Levy, Hackers (Penguin USA
[paperback], 1984): 419. refusing to send lab members the
latest version of Emacs until they rejected the security system
on the lab’s computers. The move did little to improve
Stallman’s growing reputation as an extremist, but it got the
point across: commune members were expected to speak up
for basic hacker values.

“A lot of people were angry with me, saying I was trying to
hold them hostage or blackmail them, which in a sense I was,”
Stallman would later tell author Steven Levy. “I was engaging
in violence against them because I thought they were engaging
in violence to everyone at large.”

Over time, Emacs became a sales tool for the hacker ethic.
The flexibility Stallman and built into the software not only
encouraged collaboration, it demanded it. Users who didn’t
keep abreast of the latest developments in Emacs evolution or
didn’t contribute their contributions back to Stallman ran the
risk of missing out on the latest breakthroughs. And the
breakthroughs were many. Twenty years later, users had
modified Emacs for so many different uses-using it as a
spreadsheet, calculator, database, and web browser-that later
Emacs developers adopted an overflowing sink to represent its
versatile functionality. “That’s the idea that we wanted to
convey,” says Stallman. “The amount of stuff it has contained
within it is both wonderful and awful at the same time.”

Stallman’s AI Lab contemporaries are more charitable. Hal
Abelson, an MIT grad student who worked with Stallman
during the 1970s and would later assist Stallman as a charter
boardmember of the Free Software Foundation, describes
Emacs as “an absolutely brilliant creation.” In giving
programmers a way to add new software libraries and features
without messing up the system, Abelson says, Stallman paved
the way for future large-scale collaborative software projects.
“Its structure was robust enough that you’d have people all
over the world who were loosely collaborating [and]
contributing to it,” Abelson says. “I don’t know if that had
been done before.“In writing this chapter, I’ve elected to focus
more on the social significance of Emacs than the software
significance. To read more about the software side, I
recommend Stallman’s 1979 memo. I particularly recommend
the section titled “Research Through Development of Installed
Tools” (#SEC27). Not only is it accessible to the nontechnical
reader, it also sheds light on how closely intertwined
Stallman’s political philosophies are with his software-design
philosophies. A sample excerpt follows: EMACS could not
have been reached by a process of careful design, because
such processes arrive only at goals which are visible at the
outset, and whose desirability is established on the bottom line
at the outset. Neither I nor anyone else visualized an extensible
editor until I had made one, nor appreciated its value until he
had experienced it. EMACS exists because I felt free to make
individually useful small improvements on a path whose end
was not in sight.

Guy Steele expresses similar admiration. Currently a
research scientist for Sun Microsystems, he remembers
Stallman primarily as a “brilliant programmer with the ability
to generate large quantities of relatively bug-free code.”

Although their personalities didn’t exactly mesh, Steele and
Stallman collaborated long enough for Steele to get a glimpse
of Stallman’s intense coding style. He recalls a notable episode
in the late 1970s when the two programmers banded together
to write the editor’s “pretty print” feature. Originally
conceived by Steele, pretty print was another keystroke-
triggerd feature that reformatted Emacs’ source code so that it
was both more readable and took up less space, further
bolstering the program’s WYSIWIG qualities. The feature was
strategic enough to attract Stallman’s active interest, and it
wasn’t long before Steele wrote that he and Stallman were
planning an improved version.

“We sat down one morning,” recalls Steele. “I was at the
keyboard, and he was at my elbow,” says Steele. “He was
perfectly willing to let me type, but he was also telling me
what to type.

The programming session lasted 10 hours. Throughout that
entire time, Steele says, neither he nor Stallman took a break
or made any small talk. By the end of the session, they had
managed to hack the pretty print source code to just under 100
lines. “My fingers were on the keyboard the whole time,”
Steele recalls, “but it felt like both of our ideas were flowing
onto the screen. He told me what to type, and I typed it.”

The length of the session revealed itself when Steele finally
left the AI Lab. Standing outside the building at 545 Tech
Square, he was surprised to find himself surrounded by
nighttime darkness. As a programmer, Steele was used to
marathon coding sessions. Still, something about this session
was different. Working with Stallman had forced Steele to
block out all external stimuli and focus his entire mental
energies on the task at hand. Looking back, Steele says he
found the Stallman mind-meld both exhilarating and scary at

the same time. “My first thought afterward was: it was a great
experience, very intense, and that I never wanted to do it again
in my life.”

A Stark Moral Choice

On September 27, 1983, computer programmers logging on
to the Usenet newsgroup net.unix-wizards encountered an
unusual message. Posted in the small hours of the morning,
12:30 a.m. to be exact, and signed by rms@mit-oz , the
message’s subject line was terse but attention-grabbing. “New
UNIX implementation,” it read. Instead of introducing a newly
released version of Unix, however, the message’s opening
paragraph issued a call to arms: Starting this Thanksgiving I
am going to write a complete Unix-compatible software
system called GNU (for Gnu’s Not Unix), and give it away
free to everyone who can use it. Contributions of time, money,
programs and equipment are greatly needed.1 To an
experienced Unix developer, the message was a mixture of
idealism and hubris. Not only did the author pledge to rebuild
the already mature Unix operating system from the ground up,
he also proposed to improve it in places. The new GNU
system, the author predicted, would carry all the usual
components-a text editor, a shell program to run Unix-
compatible applications, a compiler, “and a few other
things.“See Richard Stallman, “Initial GNU Announcement”
(September 1983). http://www.gnu.ai.mit.edu/gnu/initial-
announcement.html It would also contain many enticing
features that other Unix systems didn’t yet offer: a graphic
user interface based on the Lisp programming language, a
crash-proof file system, and networking protocols built
according to MIT’s internal networking system.

“GNU will be able to run Unix programs, but will not be
identical to Unix,” the author wrote. “We will make all

improvements that are convenient, based on our experience
with other operating systems.”

Anticipating a skeptical response on some readers’ part, the
author made sure to follow up his operating-system outline
with a brief biographical sketch titled, “Who am I?”: I am
Richard Stallman, inventor of the original much-imitated
EMACS editor, now at the Artificial Intelligence Lab at MIT. I
have worked extensively on compilers, editors, debuggers,
command interpreters, the Incompatible Timesharing System
and the Lisp Machine operating system. I pioneered terminal-
independent display support in ITS. In addition I have
implemented one crashproof file system and two window
systems for Lisp machines. As fate would have it, Stallman’s
fanciful GNU Project missed its Thanksgiving launch date. By
January, 1984, however, Stallman made good on his promise
and fully immersed himself in the world of Unix software
development. For a software architect raised on ITS, it was
like designing suburban shopping malls instead of Moorish
palaces. Even so, building a Unix-like operating system had its
hidden advantages. ITS had been powerful, but it also
possessed an Achilles’ heel: MIT hackers had designed it to
take specific advantage of the DEC-built PDP line. When AI
Lab administrators elected to phase out the lab’s powerful
PDP-10 machine in the early 1980s, the operating system that
hackers once likened to a vibrant city became an instant ghost
town. Unix, on the other hand, was designed for mobility and
long-term survival. Originally developed by junior scientists at
AT&T, the program had slipped out under corporate-
management radar, finding a happy home in the cash-strapped
world of academic computer systems. With fewer resources
than their MIT brethren, Unix developers had customized the
software to ride atop a motley assortment of hardware

systems: everything from the 16-bit PDP-11-a machine
considered fit for only small tasks by most AI Lab hackers-to
32-bit mainframes such as the VAX 11/780. By 1983, a few
companies, most notably Sun Microsystems, were even going
so far as to develop a new generation of microcomputers,
dubbed “workstations,” to take advantage of the increasingly
ubiquitous operating system.

To facilitate this process, the developers in charge of
designing the dominant Unix strains made sure to keep an
extra layer of abstraction between the software and the
machine. Instead of tailoring the operating system to take
advantage of a specific machine’s resources-as the AI Lab
hackers had done with ITS and the PDP-10-Unix developers
favored a more generic, off-the-rack approach. Focusing more
on the interlocking standards and specifications that held the
operating system’s many subcomponents together, rather than
the actual components themselves, they created a system that
could be quickly modified to suit the tastes of any machine. If
a user quibbled with a certain portion, the standards made it
possible to pull out an individual subcomponent and either fix
it or replace it with something better. Simply put, what the
Unix approach lacked in terms of style or aesthetics, it more
than made up for in terms of flexibility and economy, hence its
rapid adoption.See Marshall Kirk McKusick, “Twenty Years
of Berkeley Unix,” Open Sources (O’Reilly & Associates,
Inc., 1999): 38.

Stallman’s decision to start developing the GNU system was
triggered by the end of the ITS system that the AI Lab hackers
had nurtured for so long. The demise of ITS had been a
traumatic blow to Stallman. Coming on the heels of the Xerox
laser printer episode, it offered further evidence that the AI

Lab hacker culture was losing its immunity to business
practices in the outside world.

Like the software code that composed it, the roots of ITS’
demise stretched way back. Defense spending, long a major
font for computer-science research, had dried up during the
post-Vietnam years. In a desperate quest for new funds,
laboratories and universities turned to the private sector. In the
case of the AI Lab, winning over private investors was an easy
sell. Home to some of the most ambitious computer-science
projects of the post-war era, the lab became a quick incubator
of technology. Indeed, by 1980, most of the lab’s staff,
including many hackers, were dividing its time between
Institute and commercial projects.

What at first seemed like a win-win deal-hackers got to
work on the best projects, giving the lab first look at many of
the newest computer technologies coming down the pike-soon
revealed itself as a Faustian bargain. The more time hackers
devoted to cutting-edge commercial projects, the less time
they had to devote to general maintenance on the lab’s baroque
software infrastructure. Soon, companies began hiring away
hackers outright in an attempt to monopolize their time and
attention. With fewer hackers to mind the shop, programs and
machines took longer to fix. Even worse, Stallman says, the
lab began to undergo a “demographic change.” The hackers
who had once formed a vocal minority within the AI Lab were
losing membership while “the professors and the students who
didn’t really love the [PDP-10] were just as numerous as
before.“See Richard Stallman (1986).

The breaking point came in 1982. That was the year the
lab’s administration decided to upgrade its main computer, the
PDP-10. Digital, the corporation that manufactured the PDP-
10, had discontinued the line. Although the company still

offered a high-powered mainframe, dubbed the KL-10, the
new machine required a drastic rewrite or “port” of ITS if
hackers wanted to continue running the same operating
system. Fearful that the lab had lost its critical mass of in-
house programming talent, AI Lab faculty members pressed
for Twenex, a commercial operating system developed by
Digital. Outnumbered, the hackers had no choice but to
comply.

“Without hackers to maintain the system, [faculty members]
said, `We’re going to have a disaster; we must have
commercial software,’” Stallman would recall a few years
later. “They said, `We can expect the company to maintain it.’
It proved that they were utterly wrong, but that’s what they
did.”

At first, hackers viewed the Twenex system as yet another
authoritarian symbol begging to be subverted. The system’s
name itself was a protest. Officially dubbed TOPS-20 by DEC,
it was a successor to TOPS-10, a commercial operating system
DEC marketed for the PDP-10. Bolt Beranek Newman had
deveoped an improved version, dubbed Tenex, which TOPS-
20 drew upon.Multiple sources: see Richard Stallman
interview, Gerald Sussman email, and Jargon File 3.0.0.
http://www.clueless.com/jargon3.0.0/TWENEX.html
Stallman, the hacker who coined the Twenex term, says he
came up with the name as a way to avoid using the TOPS-20
name. “The system was far from tops, so there was no way I
was going to call it that,” Stallman recalls. “So I decided to
insert a `w’ in the Tenex name and call it Twenex.”

The machine that ran the Twenex/TOPS-20 system had its
own derisive nickname: Oz. According to one hacker legend,
the machine got its nickname because it required a smaller
PDP-11 machine to power its terminal. One hacker, upon

viewing the KL-10-PDP-11 setup for the first time, likened it
to the wizard’s bombastic onscreen introduction in the Wizard
of Oz. “I am the great and powerful Oz,” the hacker intoned.
“Pay no attention to the PDP-11 behind that console.“See
http://www.as.cmu.edu/~geek/humor/See_Figure_1.txt

If hackers laughed when they first encountered the KL-10,
their laughter quickly died when they encountered Twenex.
Not only did Twenex boast built-in security, but the system’s
software engineers had designed the tools and applications
with the security system in mind. What once had been a cat-
and-mouse game over passwords in the case of the Laboratory
for Computer Science’s security system, now became an out-
and-out battle over system management. System
administrators argued that without security, the Oz system was
more prone to accidental crashes. Hackers argued that crashes
could be better prevented by overhauling the source code.
Unfortunately, the number of hackers with the time and
inclination to perform this sort of overhaul had dwindled to the
point that the system-administrator argument prevailed.

Cadging passwords and deliberately crashing the system in
order to glean evidence from the resulting wreckage, Stallman
successfully foiled the system administrators’ attempt to assert
control. After one foiled “coup d’etat,” Stallman issued an
alert to the entire AI staff.

“There has been another attempt to seize power,” Stallman
wrote. “So far, the aristocratic forces have been defeated.” To
protect his identity, Stallman signed the message “Radio Free
OZ.”

The disguise was a thin one at best. By 1982, Stallman’s
aversion to passwords and secrecy had become so well known
that users outside the AI Laboratory were using his account as

a stepping stone to the ARPAnet, the research-funded
computer network that would serve as a foundation for today’s
Internet. One such “tourist” during the early 1980s was Don
Hopkins, a California programmer who learned through the
hacking grapevine that all an outsider needed to do to gain
access to MIT’s vaunted ITS system was to log in under the
initials RMS and enter the same three-letter monogram when
the system requested a password.

“I’m eternally grateful that MIT let me and many other
people use their computers for free,” says Hopkins. “It meant a
lot to many people.”

This so-called “tourist” policy, which had been openly
tolerated by MIT management during the ITS years,See “MIT
AI Lab Tourist Policy.” http://catalog.com/hopkins/text/tourist-
policy.html fell by the wayside when Oz became the lab’s
primary link to the ARPAnet. At first, Stallman continued his
policy of repeating his login ID as a password so outside users
could follow in his footsteps. Over time, however, the Oz’s
fragility prompted administrators to bar outsiders who,
through sheer accident or malicious intent, might bring down
the system. When those same administrators eventually
demanded that Stallman stop publishing his password,
Stallman, citing personal ethics, refused to do so and ceased
using the Oz system altogether.3

“[When] passwords first appeared at the MIT AI Lab I
[decided] to follow my belief that there should be no
passwords,” Stallman would later say. “Because I don’t
believe that it’s really desirable to have security on a
computer, I shouldn’t be willing to help uphold the security
regime.”

Stallman’s refusal to bow before the great and powerful Oz
symbolized the growing tension between hackers and AI Lab
management during the early 1980s. This tension paled in
comparison to the conflict that raged within the hacker
community itself. By the time the KL-10 arrived, the hacker
community had already divided into two camps. The first
centered around a software company called Symbolics, Inc.
The second centered around Symbolics chief rival, Lisp
Machines, Inc. (LMI). Both companies were in a race to
market the Lisp Machine, a device built to take full advantage
of the Lisp programming language.

Created by artificial-intelligence research pioneer John
McCarthy, a MIT artificial-intelligence researcher during the
late 1950s, Lisp is an elegant language well-suited for
programs charged with heavy-duty sorting and processing.
The language’s name is a shortened version of LISt
Processing. Following McCarthy’s departure to the Stanford
Artificial Intelligence Laboratory, MIT hackers refined the
language into a local dialect dubbed MACLISP. The “MAC”
stood for Project MAC, the DARPA-funded research project
that gave birth to the AI Lab and the Laboratory for Computer
Science. Led by AI Lab arch-hacker Richard Greenblatt, AI
Lab programmers during the 1970s built up an entire Lisp-
based operating system, dubbed the Lisp Machine operating
system. By 1980, the Lisp Machine project had generated two
commercial spin-offs. Symbolics was headed by Russell
Noftsker, a former AI Lab administrator, and Lisp Machines,
Inc., was headed by Greenblatt.

The Lisp Machine software was hacker-built, meaning it
was owned by MIT but available for anyone to copy as per
hacker custom. Such a system limited the marketing advantage
of any company hoping to license the software from MIT and

market it as unique. To secure an advantage, and to bolster the
aspects of the operating system that customers might consider
attractive, the companies recruited various AI Lab hackers and
set them working on various components of the Lisp Machine
operating system outside the auspices of the AI Lab.

The most aggressive in this strategy was Symbolics. By the
end of 1980, the company had hired 14 AI Lab staffers as part-
time consultants to develop its version of the Lisp Machine.
Apart from Stallman, the rest signed on to help LMI.See H. P.
Newquist, The Brain Makers: Genius, Ego, and Greed in the
Quest for Machines that Think (Sams Publishing, 1994): 172.

At first, Stallman accepted both companies’ attempt to
commercialize the Lisp machine, even though it meant more
work for him. Both licensed the Lisp Machine OS source code
from MIT, and it was Stallman’s job to update the lab’s own
Lisp Machine to keep pace with the latest innovations.
Although Symbolics’ license with MIT gave Stallman the
right to review, but not copy, Symbolics’ source code,
Stallman says a “gentleman’s agreement” between Symbolics
management and the AI Lab made it possible to borrow
attractive snippets in traditional hacker fashion.

On March 16, 1982, a date Stallman remembers well
because it was his birthday, Symbolics executives decided to
end this gentlemen’s agreement. The move was largely
strategic. LMI, the primary competition in the Lisp Machine
marketplace, was essentially using a copy of the AI Lab Lisp
Machine. Rather than subsidize the development of a market
rival, Symbolics executives elected to enforce the letter of the
license. If the AI Lab wanted its operating system to stay
current with the Symbolics operating system, the lab would
have to switch over to a Symbolics machine and sever its
connection to LMI.

As the person responsible for keeping up the lab’s Lisp
Machine, Stallman was incensed. Viewing this announcement
as an “ultimatum,” he retaliated by disconnecting Symbolics’
microwave communications link to the laboratory. He then
vowed never to work on a Symbolics machine and pledged his
immediate allegiance to LMI. “The way I saw it, the AI Lab
was a neutral country, like Belgium in World War I,” Stallman
says. “If Germany invades Belgium, Belgium declares war on
Germany and sides with Britain and France.”

The circumstances of the so-called “Symbolics War” of
1982-1983 depend heavily on the source doing the telling.
When Symbolics executives noticed that their latest features
were still appearing in the AI Lab Lisp Machine and, by
extension, the LMI Lisp machine, they installed a “spy”
program on Stallman’s computer terminal. Stallman says he
was rewriting the features from scratch, taking advantage of
the license’s review clause but also taking pains to make the
source code as different as possible. Symbolics executives
argued otherwise and took their case to MIT administration.
According to 1994 book, The Brain Makers: Genius, Ego, and
Greed, and the Quest for Machines That Think, written by
Harvey Newquist, the administration responded with a
warning to Stallman to “stay away” from the Lisp Machine
project.Ibid.: 196. According to Stallman, MIT administrators
backed Stallman up. “I was never threatened,” he says. “I did
make changes in my practices, though. Just to be ultra safe, I
no longer read their source code. I used only the
documentation and wrote the code from that.”

Whatever the outcome, the bickering solidified Stallman’s
resolve. With no source code to review, Stallman filled in the
software gaps according to his own tastes and enlisted
members of the AI Lab to provide a continuous stream of bug

reports. He also made sure LMI programmers had direct
access to the changes. “I was going to punish Symbolics if it
was the last thing I did,” Stallman says.

Such statements are revealing. Not only do they shed light
on Stallman’s nonpacifist nature, they also reflect the intense
level of emotion triggered by the conflict. According to
another Newquist-related story, Stallman became so irate at
one point that he issued an email threatening to “wrap myself
in dynamite and walk into Symbolics’ offices.“Ibid. Newquist,
who says this anecdote was confirmed by several Symbolics
executives, writes, “The message caused a brief flurry of
excitement and speculation on the part of Symbolics’
employees, but ultimately, no one took Stallman’s outburst
that seriously.” Although Stallman would deny any memory of
the email and still describes its existence as a “vicious rumor,”
he acknowledges that such thoughts did enter his head. “I
definitely did have fantasies of killing myself and destroying
their building in the process,” Stallman says. “I thought my
life was over.”

The level of despair owed much to what Stallman viewed as
the “destruction” of his “home”-i.e., the demise of the AI
Lab’s close-knit hacker subculture. In a later email interview
with Levy, Stallman would liken himself to the historical
figure Ishi, the last surviving member of the Yahi, a Pacific
Northwest tribe wiped out during the Indian wars of the 1860s
and 1870s. The analogy casts Stallman’s survival in epic,
almost mythical, terms. In reality, however, it glosses over the
tension between Stallman and his fellow AI Lab hackers prior
to the Symbolics-LMI schism. Instead of seeing Symbolics as
an exterminating force, many of Stallman’s colleagues saw it
as a belated bid for relevance. In commercializing the Lisp
Machine, the company pushed hacker principles of engineer-

driven software design out of the ivory-tower confines of the
AI Lab and into the corporate marketplace where manager-
driven design principles held sway. Rather than viewing
Stallman as a holdout, many hackers saw him as a troubling
anachronism.

Stallman does not dispute this alternate view of historical
events. In fact, he says it was yet another reason for the
hostility triggered by the Symbolics “ultimatum.” Even before
Symbolics hired away most of the AI Lab’s hacker staff,
Stallman says many of the hackers who later joined Symbolics
were shunning him. “I was no longer getting invited to go to
Chinatown,” Stallman recalls. “The custom started by
Greenblatt was that if you went out to dinner, you went around
or sent a message asking anybody at the lab if they also
wanted to go. Sometime around 1980-1981, I stopped getting
asked. They were not only not inviting me, but one person
later confessed that he had been pressured to lie to me to keep
their going away to dinner without me a secret.”

Although Stallman felt anger toward the hackers who
orchestrated this petty form of ostracism, the Symbolics
controversy dredged up a new kind of anger, the anger of a
person about to lose his home. When Symbolics stopped
sending over its source-code changes, Stallman responded by
holing up in his MIT offices and rewriting each new software
feature and tool from scratch. Frustrating as it may have been,
it guaranteed that future Lisp Machine users had unfettered
access to the same features as Symbolics users.

It also guaranteed Stallman’s legendary status within the
hacker community. Already renowned for his work with
Emacs, Stallman’s ability to match the output of an entire team
of Symbolics programmers-a team that included more than a
few legendary hackers itself-still stands has one of the major

human accomplishments of the Information Age, or of any age
for that matter. Dubbing it a “master hack” and Stallman
himself a “virtual John Henry of computer code,” author
Steven Levy notes that many of his Symbolics-employed
rivals had no choice but to pay their idealistic former comrade
grudging respect. Levy quotes Bill Gosper, a hacker who
eventually went to work for Symbolics in the company’s Palo
Alto office, expressing amazement over Stallman’s output
during this period: I can see something Stallman wrote, and I
might decide it was bad (probably not, but somebody could
convince me it was bad), and I would still say, “But wait a
minute-Stallman doesn’t have anybody to argue with all night
over there. He’s working alone! It’s incredible anyone could
do this alone!“See Steven Levy, Hackers (Penguin USA
[paperback], 1984): 426. For Stallman, the months spent
playing catch up with Symbolics evoke a mixture of pride and
profound sadness. As a dyed-in-the-wool liberal whose father
had served in World War II, Stallman is no pacifist. In many
ways, the Symbolics war offered the rite of passage toward
which Stallman had been careening ever since joining the AI
Lab staff a decade before. At the same time, however, it
coincided with the traumatic destruction of the AI Lab hacker
culture that had nurtured Stallman since his teenage years. One
day, while taking a break from writing code, Stallman
experienced a traumatic moment passing through the lab’s
equipment room. There, Stallman encountered the hulking,
unused frame of the PDP-10 machine. Startled by the dormant
lights, lights that once actively blinked out a silent code
indicating the status of the internal program, Stallman says the
emotional impact was not unlike coming across a beloved
family member’s well-preserved corpse.

“I started crying right there in the equipment room,” he
says. “Seeing the machine there, dead, with nobody left to fix
it, it all drove home how completely my community had been
destroyed.”

Stallman would have little opportunity to mourn. The Lisp
Machine, despite all the furor it invoked and all the labor that
had gone into making it, was merely a sideshow to the large
battles in the technology marketplace. The relentless pace of
computer miniaturization was bringing in newer, more
powerful microprocessors that would soon incorporate the
machine’s hardware and software capabilities like a modern
metropolis swallowing up an ancient desert village.

Riding atop this microprocessor wave were hundreds-
thousands-of commercial software programs, each protected
by a patchwork of user licenses and nondisclosure agreements
that made it impossible for hackers to review or share source
code. The licenses were crude and ill-fitting, but by 1983 they
had become strong enough to satisfy the courts and scare away
would-be interlopers. Software, once a form of garnish most
hardware companies gave away to make their expensive
computer systems more flavorful, was quickly becoming the
main dish. In their increasing hunger for new games and
features, users were putting aside the traditional demand to
review the recipe after every meal.

Nowhere was this state of affairs more evident than in the
realm of personal computer systems. Companies such as
Apple Computer and Commodore were minting fresh
millionaires selling machines with built-in operating systems.
Unaware of the hacker culture and its distaste for binary-only
software, many of these users saw little need to protest when
these companies failed to attach the accompanying source-
code files. A few anarchic adherents of the hacker ethic helped

propel that ethic into this new marketplace, but for the most
part, the marketplace rewarded the programmers speedy
enough to write new programs and savvy enough to copyright
them as legally protected works.

One of the most notorious of these programmers was Bill
Gates, a Harvard dropout two years Stallman’s junior.
Although Stallman didn’t know it at the time, seven years
before sending out his message to the n et.unix-wizards
newsgroup, Gates, a budding entrepreneur and general partner
with the Albuquerque-based software firm Micro-Soft, later
spelled as Microsoft, had sent out his own open letter to the
software-developer community. Written in response to the PC
users copying Micro-Soft’s software programs, Gates’ ” Open
Letter to Hobbyists” had excoriated the notion of communal
software development.

“Who can afford to do professional work for nothing?”
asked Gates. “What hobbyist can put three man-years into
programming, finding all bugs, documenting his product, and
distributing it for free?“See Bill Gates, “An Open Letter to
Hobbyists” (February 3, 1976). To view an online copy of this
letter, go to

http://www.blinkenlights.com/classiccmp/gateswhine.html.

Although few hackers at the AI Lab saw the missive, Gates’
1976 letter nevertheless represented the changing attitude
toward software both among commercial software companies
and commercial software developers. Why treat software as a
zero-cost commodity when the market said otherwise? As the
1970s gave way to the 1980s, selling software became more
than a way to recoup costs; it became a political statement. At
a time when the Reagan Administration was rushing to
dismantle many of the federal regulations and spending

programs that had been built up during the half century
following the Great Depression, more than a few software
programmers saw the hacker ethic as anticompetitive and, by
extension, un-American. At best, it was a throwback to the
anticorporate attitudes of the late 1960s and early 1970s. Like
a Wall Street banker discovering an old tie-dyed shirt hiding
between French-cuffed shirts and double-breasted suits, many
computer programmers treated the hacker ethic as an
embarrassing reminder of an idealistic age.

For a man who had spent the entire 1960s as an
embarrassing throwback to the 1950s, Stallman didn’t mind
living out of step with his peers. As a programmer used to
working with the best machines and the best software,
however, Stallman faced what he could only describe as a
“stark moral choice”: either get over his ethical objection for ”
proprietary” software-the term Stallman and his fellow hackers
used to describe any program that carried private copyright or
end-user license that restricted copying and modification-or
dedicate his life to building an alternate, nonproprietary
system of software programs. Given his recent months-long
ordeal with Symbolics, Stallman felt more comfortable with
the latter option. “I suppose I could have stopped working on
computers altogether,” Stallman says. “I had no special skills,
but I’m sure I could have become a waiter. Not at a fancy
restaurant, probably, but I could’ve been a waiter somewhere.”

Being a waiter-i.e., dropping out of programming
altogether-would have meant completely giving up an activity,
computer programming, that had given him so much pleasure.
Looking back on his life since moving to Cambridge, Stallman
finds it easy to identify lengthy periods when software
programming provided the only pleasure. Rather than drop
out, Stallman decided to stick it out.

An atheist, Stallman rejects notions such as fate, dharma, or
a divine calling in life. Nevertheless, he does feel that the
decision to shun proprietary software and build an operating
system to help others do the same was a natural one. After all,
it was Stallman’s own personal combination of stubbornness,
foresight, and coding virtuosity that led him to consider a fork
in the road most others didn’t know existed. In describing the
decision in a chapter for the 1999 book, Open Sources,
Stallman cites the spirit encapsulated in the words of the
Jewish sage Hillel: If I am not for myself, who will be for me?
If I am only for myself, what am I?If not now, when?See
Richard Stallman, Open Sources (O’Reilly & Associates, Inc.,
1999): 56. Stallman adds his own footnote to this statement,
writing, “As an atheist, I don’t follow any religious leaders,
but I sometimes find I admire something one of them has
said.” Speaking to audiences, Stallman avoids the religious
route and expresses the decision in pragmatic terms. “I asked
myself: what could I, an operating-system developer, do to
improve the situation? It wasn’t until I examined the question
for a while that I realized an operating-system developer was
exactly what was needed to solve the problem.”

Once he reached that decision, Stallman says, everything
else “fell into place.” He would abstain from using software
programs that forced him to compromise his ethical beliefs,
while at the same time devoting his life to the creation of

software that would make it easier for others to follow the
same path. Pledging to build a free software operating system
“or die trying-of old age, of course,” Stallman quips, he
resigned from the MIT staff in January, 1984, to build GNU.

The resignation distanced Stallman’s work from the legal
auspices of MIT. Still, Stallman had enough friends and allies
within the AI Lab to retain rent-free access to his MIT office.
He also had the ability to secure outside consulting gigs to
underwrite the early stages of the GNU Project. In resigning
from MIT, however, Stallman negated any debate about
conflict of interest or Institute ownership of the software. The
man whose early adulthood fear of social isolation had driven
him deeper and deeper into the AI Lab’s embrace was now
building a legal firewall between himself and that
environment.

For the first few months, Stallman operated in isolation
from the Unix community as well. Although his
announcement to the net.unix-wizards group had attracted
sympathetic responses, few volunteers signed on to join the
crusade in its early stages.

“The community reaction was pretty much uniform,” recalls
Rich Morin, leader of a Unix user group at the time. “People
said, `Oh, that’s a great idea. Show us your code. Show us it
can be done.’”

In true hacker fashion, Stallman began looking for existing
programs and tools that could be converted into GNU
programs and tools. One of the first was a compiler named
VUCK, which converted programs written in the popular C
programming language into machine-readable code.
Translated from the Dutch, the program’s acronym stood for
the Free University Compiler Kit. Optimistic, Stallman asked

the program’s author if the program was free. When the author
informed him that the words “Free University” were a
reference to the Vrije Universiteit in Amsterdam, Stallman was
chagrined.

“He responded derisively, stating that the university
was free but the compiler was not,” recalls Stallman.
“I therefore decided that my first program for the GNU
Project would be a multi-language, multi-platform compiler.”

Eventually Stallman found a Pastel language compiler
written by programmers at Lawrence Livermore National Lab.
According to Stallman’s knowledge at the time, the compiler
was free to copy and modify. Unfortunately, the program
possessed a sizable design flaw: it saved each program into
core memory, tying up precious space for other software
activities. On mainframe systems this design flaw had been
forgivable. On Unix systems it was a crippling barrier, since
the machines that ran Unix were too small to handle the large
files generated. Stallman made substantial progress at first,
building a C-compatible frontend to the compiler. By summer,
however, he had come to the conclusion that he would have to
build a totally new compiler from scratch.

In September of 1984, Stallman shelved compiler
development for the near term and began searching for lower-
lying fruit. He began development of a GNU version of
Emacs, the program he himself had been supervising for a
decade. The decision was strategic. Within the Unix
community, the two native editor programs were vi, written by
Sun Microsystems cofounder Bill Joy, and ed, written by Bell
Labs scientist (and Unix cocreator) Ken Thompson. Both were
useful and popular, but neither offered the endlessly
expandable nature of Emacs. In rewriting Emacs for the Unix
audience, Stallman stood a better chance of showing off his

skills. It also stood to reason that Emacs users might be more
attuned to the Stallman mentality.

Looking back, Stallman says he didn’t view the decision in
strategic terms. “I wanted an Emacs, and I had a good
opportunity to develop one.”

Once again, the notion of reinventing the wheel grated on
Stallman’s efficient hacker sensibilities. In writing a Unix
version of Emacs, Stallman was soon following the footsteps
of Carnegie Mellon graduate student James Gosling, author of
a C-based version dubbed Gosling Emacs or GOSMACS.
Gosling’s version of Emacs included an interpreter that
exploited a simplified offshoot of the Lisp language called
MOCKLISP. Determined to build GNU Emacs on a similar
Lisp foundation, Stallman borrowed copiously from Gosling’s
innovations. Although Gosling had put GOSMACS under
copyright and had sold the rights to UniPress, a privately held
software company, Stallman cited the assurances of a fellow
developer who had participated in the early MOCKLISP
interpreter. According to the developer, Gosling, while a Ph.D.
student at Carnegie Mellon, had assured early collaborators
that their work would remain accessible. When UniPress
caught wind of Stallman’s project, however, the company
threatened to enforce the copyright. Once again, Stallman
faced the prospect of building from the ground up.

In the course of reverse-engineering Gosling’s interpreter,
Stallman would create a fully functional Lisp interpreter,
rendering the need for Gosling’s original interpreter moot.
Nevertheless, the notion of developers selling off software
rights-indeed, the very notion of developers having software
rights to sell in the first place-rankled Stallman. In a 1986
speech at the Swedish Royal Technical Institute, Stallman

cited the UniPress incident as yet another example of the
dangers associated with proprietary software.

“Sometimes I think that perhaps one of the best things I
could do with my life is find a gigantic pile of proprietary
software that was a trade secret, and start handing out copies
on a street corner so it wouldn’t be a trade secret any more,”
said Stallman. “Perhaps that would be a much more efficient
way for me to give people new free software than actually
writing it myself; but everyone is too cowardly to even take
it.”

Despite the stress it generated, the dispute over Gosling’s
innovations would assist both Stallman and the free software
movement in the long term. It would force Stallman to address
the weaknesses of the Emacs Commune and the informal trust
system that had allowed problematic offshoots to emerge. It
would also force Stallman to sharpen the free software
movement’s political objectives. Following the release of
GNU Emacs in 1985, Stallman issued ” The GNU Manifesto,”
an expansion of the original announcement posted in
September, 1983. Stallman included within the document a
lengthy section devoted to the many arguments used by
commercial and academic programmers to justify the
proliferation of proprietary software programs. One argument,
“Don’t programmers deserve a reward for their creativity,”
earned a response encapsulating Stallman’s anger over the
recent Gosling Emacs episode:

“If anything deserves a reward, it is social contribution,”
Stallman wrote. “Creativity can be a social contribution, but
only in so far [sic] as society is free to use the results. If
programmers deserve to be rewarded for creating innovative
programs, by the same token they deserve to be punished if
they restrict the use of these programs.“See Richard Stallman,

“The GNU Manifesto” (1985).
http://www.gnu.org/manifesto.html

With the release of GNU Emacs, the GNU Project finally
had code to show. It also had the burdens of any software-
based enterprise. As more and more Unix developers began
playing with the software, money, gifts, and requests for tapes
began to pour in. To address the business side of the GNU
Project, Stallman drafted a few of his colleagues and formed
the Free Software Foundation (FSF), a nonprofit organization
dedicated to speeding the GNU Project towards its goal. With
Stallman as president and various hacker allies as board
members, the FSF helped provide a corporate face for the
GNU Project.

Robert Chassell, a programmer then working at Lisp
Machines, Inc., became one of five charter board members at
the Free Software Foundation following a dinner conversation
with Stallman. Chassell also served as the organization’s
treasurer, a role that started small but quickly grew.

“I think in ‘85 our total expenses and revenue were
something in the order of $23,000, give or take,” Chassell
recalls. “Richard had his office, and we borrowed space. I put
all the stuff, especially the tapes, under my desk. It wasn’t
until sometime later LMI loaned us some space where we
could store tapes and things of that sort.”

In addition to providing a face, the Free Software
Foundation provided a center of gravity for other disenchanted
programmers. The Unix market that had seemed so collegial
even at the time of Stallman’s initial GNU announcement was
becoming increasingly competitive. In an attempt to tighten
their hold on customers, companies were starting to close off
access to Unix source code, a trend that only speeded the

number of inquiries into ongoing GNU software projects. The
Unix wizards who once regarded Stallman as a noisy kook
were now beginning to see him as a software Cassandra.

“A lot of people don’t realize, until they’ve had it happen to
them, how frustrating it can be to spend a few years working
on a software program only to have it taken away,” says
Chassell, summarizing the feelings and opinions of the
correspondents writing in to the FSF during the early years.
“After that happens a couple of times, you start to say to
yourself, `Hey, wait a minute.’”

For Chassell, the decision to participate in the Free Software
Foundation came down to his own personal feelings of loss.
Prior to LMI, Chassell had been working for hire, writing an
introductory book on Unix for Cadmus, Inc., a Cambridge-
area software company. When Cadmus folded, taking the
rights to the book down with it, Chassell says he attempted to
buy the rights back with no success.

“As far as I know, that book is still sitting on shelf
somewhere, unusable, uncopyable, just taken out of the
system,” Chassell says. “It was quite a good introduction if I
may say so myself. It would have taken maybe three or four
months to convert [the book] into a perfectly usable
introduction to GNU/Linux today. The whole experience,
aside from what I have in my memory, was lost.”

Forced to watch his work sink into the mire while his
erstwhile employer struggled through bankruptcy, Chassell
says he felt a hint of the anger that drove Stallman to fits of
apoplexy. “The main clarity, for me, was the sense that if you
want to have a decent life, you don’t want to have bits of it
closed off,” Chassell says. “This whole idea of having the
freedom to go in and to fix something and modify it, whatever

it may be, it really makes a difference. It makes one think
happily that after you’ve lived a few years that what you’ve
done is worthwhile. Because otherwise it just gets taken away
and thrown out or abandoned or, at the very least, you no
longer have any relation to it. It’s like losing a bit of your life.”

St. Ignucius

The Maui High Performance Computing Center is located
in a single-story building in the dusty red hills just above the
town of Kihei. Framed by million-dollar views and the
multimillion dollar real estate of the Silversword Golf Course,
the center seems like the ultimate scientific boondoggle. Far
from the boxy, sterile confines of Tech Square or even the
sprawling research metropolises of Argonne, Illinois and Los
Alamos, New Mexico, the MHPCC seems like the kind of
place where scientists spend more time on their tans than their
post-doctoral research projects.

The image is only half true. Although researchers at the
MHPCC do take advantage of the local recreational
opportunities, they also take their work seriously. According to
Top500.org, a web site that tracks the most powerful
supercomputers in the world, the IBM SP Power3
supercomputer housed within the MHPCC clocks in at 837
billion floating-point operations per second, making it one of
25 most powerful computers in the world. Co-owned and
operated by the University of Hawaii and the U.S. Air Force,
the machine divides its computer cycles between the number
crunching tasks associated with military logistics and high-
temperature physics research.

Simply put, the MHPCC is a unique place, a place where
the brainy culture of science and engineering and the laid-back
culture of the Hawaiian islands coexist in peaceful

equilibrium. A slogan on the lab’s 2000 web site sums it up:
“Computing in paradise.”

It’s not exactly the kind of place you’d expect to find
Richard Stallman, a man who, when taking in the beautiful
view of the nearby Maui Channel through the picture windows
of a staffer’s office, mutters a terse critique: “Too much sun.”
Still, as an emissary from one computing paradise to another,
Stallman has a message to deliver, even if it means subjecting
his pale hacker skin to the hazards of tropical exposure.

The conference room is already full by the time I arrive to
catch Stallman’s speech. The gender breakdown is a little
better than at the New York speech, 85% male, 15% female,
but not by much. About half of the audience members wear
khaki pants and logo-encrusted golf shirts. The other half
seems to have gone native. Dressed in the gaudy flower-print
shirts so popular in this corner of the world, their faces are a
deep shade of ochre. The only residual indication of geek
status are the gadgets: Nokia cell phones, Palm Pilots, and
Sony VAIO laptops.

Needless to say, Stallman, who stands in front of the room
dressed in plain blue T-shirt, brown polyester slacks, and white
socks, sticks out like a sore thumb. The fluorescent lights of
the conference room help bring out the unhealthy color of his
sun-starved skin. His beard and hair are enough to trigger
beads of sweat on even the coolest Hawaiian neck. Short of
having the words “mainlander” tattooed on his forehead,
Stallman couldn’t look more alien if he tried.

As Stallman putters around the front of the room, a few
audience members wearing T-shirts with the logo of the Maui
FreeBSD Users Group (MFUG) race to set up camera and
audio equipment. FreeBSD, a free software offshoot of the

Berkeley Software Distribution, the venerable 1970s academic
version of Unix, is technically a competitor to the GNU/Linux
operating system. Still, in the hacking world, Stallman
speeches are documented with a fervor reminiscent of the
Grateful Dead and its legendary army of amateur archivists.
As the local free software heads, it’s up to the MFUG
members to make sure fellow programmers in Hamburg,
Mumbai, and Novosibirsk don’t miss out on the latest pearls of
RMS wisdom.

The analogy to the Grateful Dead is apt. Often, when
describing the business opportunities inherent within the free
software model, Stallman has held up the Grateful Dead as an
example. In refusing to restrict fans’ ability to record live
concerts, the Grateful Dead became more than a rock group.
They became the center of a tribal community dedicated to
Grateful Dead music. Over time, that tribal community
became so large and so devoted that the band shunned record
contracts and supported itself solely through musical tours and
live appearances. In 1994, the band’s last year as a touring act,
the Grateful Dead drew $52 million in gate receipts alone.See
“Grateful Dead Time Capsule: 1985-1995 North American
Tour Grosses.” http://www.accessplace.com/gdtc/1197.htm

While few software companies have been able to match that
success, the tribal aspect of the free software community is
one reason many in the latter half of the 1990s started to
accept the notion that publishing software source code might
be a good thing. Hoping to build their own loyal followings,
companies such as IBM, Sun Microsystems, and Hewlett
Packard have come to accept the letter, if not the spirit, of the
Stallman free software message. Describing the GPL as the
information-technology industry’s “Magna Carta,” ZDNet
software columnist Evan Leibovitch sees the growing

affection for all things GNU as more than just a trend. “This
societal shift is letting users take back control of their futures,”
Leibovitch writes. “Just as the Magna Carta gave rights to
British subjects, the GPL enforces consumer rights and
freedoms on behalf of the users of computer software.“See
Evan Leibovitch, “Who’s Afraid of Big Bad Wolves,” ZDNet
Tech Update (December 15, 2000).
http://techupdate.zdnet.com/techupdate/stories/main/0Y/A

The tribal aspect of the free software community also helps
explain why 40-odd programmers, who might otherwise be
working on physics projects or surfing the Web for
windsurfing buoy reports, have packed into a conference room
to hear Stallman speak.

Unlike the New York speech, Stallman gets no introduction.
He also offers no self-introduction. When the FreeBSD people
finally get their equipment up and running, Stallman simply
steps forward, starts speaking, and steamrolls over every other
voice in the room.

“Most of the time when people consider the question of
what rules society should have for using software, the people
considering it are from software companies, and they consider
the question from a self-serving perspective,” says Stallman,
opening his speech. “What rules can we impose on everybody
else so they have to pay us lots of money? I had the good
fortune in the 1970s to be part of a community of
programmers who shared software. And because of this I
always like to look at the same issue from a different direction
to ask: what kind of rules make possible a good society that is
good for the people who are in it? And therefore I reach
completely different answers.”

Once again, Stallman quickly segues into the parable of the
Xerox laser printer, taking a moment to deliver the same
dramatic finger-pointing gestures to the crowd. He also
devotes a minute or two to the GNU/Linux name.

“Some people say to me, `Why make such a fuss about
getting credit for this system? After all, the important thing is
the job is done, not whether you get recognition for it.’ Well,
this would be wise advice if it were true. But the job wasn’t to
build an operating system; the job is to spread freedom to the
users of computers. And to do that we have to make it possible
to do everything with computers in freedom.“For narrative
purposes, I have hesitated to go in-depth when describing
Stallman’s full definition of software “freedom.” The GNU
Project web site lists four fundamental components: The
freedom to run a program, for any purpose (freedom 0). The
freedom to study how a program works, and adapt it to your
needs (freedom 1). The freedom to redistribute copies of a
program so you can help your neighbor (freedom 2). The
freedom to improve the program, and release your
improvements to the public, so that the whole community
benefits (freedom 3). For more information, please visit “The
Free Software Definition” at
http://www.gnu.org/philosophy/free-sw.html.

Adds Stallman, “There’s a lot more work to do.”

For some in the audience, this is old material. For others,
it’s a little arcane. When a member of the golf-shirt contingent
starts dozing off, Stallman stops the speech and asks
somebody to wake the person up.

“Somebody once said my voice was so soothing, he asked if
I was some kind of healer,” says Stallman, drawing a quick
laugh from the crowd. “I guess that probably means I can help

you drift gently into a blissful, relaxing sleep. And some of
you might need that. I guess I shouldn’t object if you do. If
you need to sleep, by all means do.”

The speech ends with a brief discussion of software patents,
a growing issue of concern both within the software industry
and within the free software community. Like Napster,
software patents reflect the awkward nature of applying laws
and concepts written for the physical world to the frictionless
universe of information technology. The difference between
protecting a program under copyright and protecting a
program under software patents is subtle but significant. In the
case of copyright, a software creator can restrict duplication of
the source code but not duplication of the idea or functionality
that the source code addresses. In other words, if a developer
chooses not to use a software program under the original
developer’s terms, that second developer is still free to
reverse-engineer the program-i.e., duplicate the software
program’s functionality by rewriting the source code from
scratch. Such duplication of ideas is common within the
commercial software industry, where companies often isolate
reverse-engineering teams to head off accusations of corporate
espionage or developer hanky-panky. In the jargon of modern
software development, companies refer to this technique as
“clean room” engineering.

Software patents work differently. According to the U.S.
Patent Office, companies and individuals may secure patents
for innovative algorithms provided they submit their claims to
a public review. In theory, this allows the patent-holder to
trade off disclosure of their invention for a limited monopoly
of a minimum of 20 years after the patent filing. In practice,
the disclosure is of limited value, since the operation of the
program is often self-evident. Unlike copyright, a patent gives

its holder the ability to head off the independent development
of software programs with the same or similar functionality.

In the software industry, where 20 years can cover the entire
life cycle of a marketplace, patents take on a strategic weight.
Where companies such as Microsoft and Apple once battled
over copyright and the “look and feel” of various technologies,
today’s Internet companies use patents as a way to stake out
individual applications and business models, the most
notorious example being Amazon.com’s 2000 attempt to
patent the company’s “one-click” online shopping process. For
most companies, however, software patents have become a
defensive tool, with cross-licensing deals balancing one set of
corporate patents against another in a tense form of corporate
detente. Still, in a few notable cases of computer encryption
and graphic imaging algorithms, software vendors have
successfully stifled rival technologies.

For Stallman, the software-patent issue dramatizes the need
for eternal hacker vigilance. It also underlines the importance
of stressing the political benefits of free software programs
over the competitive benefits. Pointing to software patents’
ability to create sheltered regions in the marketplace, Stallman
says competitive performance and price, two areas where free
software operating systems such as GNU/Linux and FreeBSD
already hold a distinct advantage over their proprietary
counterparts, are red herrings compared to the large issues of
user and developer freedom.

“It’s not because we don’t have the talent to make better
software,” says Stallman. “It’s because we don’t have the
right. Somebody has prohibited us from serving the public. So
what’s going to happen when users encounter these gaps in
free software? Well, if they have been persuaded by the open
source movement that these freedoms are good because they

lead to more-powerful reliable software, they’re likely to say,
`You didn’t deliver what you promised. This software’s not
more powerful. It’s missing this feature. You lied to me.’ But
if they have come to agree with the free software movement,
that the freedom is important in itself, then they will say, `How
dare those people stop me from having this feature and my
freedom too.’ And with that kind of response, we may survive
the hits that we’re going to take as these patents explode.”

Such comments involve a hefty dose of spin, of course.
Most open source advocates are equally, if not more,
vociferous as Stallman when it comes to opposing software
patents. Still, the underlying logic of Stallman’s argument-that
open source advocates emphasize the utilitarian advantages of
free software over the political advantages-remains
uncontested. Rather than stress the political significance of
free software programs, open source advocates have chosen to
stress the engineering integrity of the hacker development
model. Citing the power of peer review, the open source
argument paints programs such as GNU/Linux or FreeBSD as
better built, better inspected and, by extension, more
trushworthy to the average user.

That’s not to say the term “open source” doesn’t have its
political implications. For open source advocates, the term
open source serves two purposes. First, it eliminates the
confusion associated with the word “free,” a word many
businesses interpret as meaning “zero cost.” Second, it allows
companies to examine the free software phenomenon on a
technological, rather than ethical, basis. Eric Raymond,
cofounder of the Open Source Initiative and one of the leading
hackers to endorse the term, effectively summed up the
frustration of following Stallman down the political path in a
1999 essay, titled ” Shut Up and Show Them the Code”:

RMS’s rhetoric is very seductive to the kind of people we are.
We hackers are thinkers and idealists who readily resonate
with appeals to “principle” and “freedom” and “rights.” Even
when we disagree with bits of his program, we want RMS’s
rhetorical style to work; we think it ought to work; we tend to
be puzzled and disbelieving when it fails on the 95% of people
who aren’t wired like we are.4 Included among that 95%,
Raymond writes, are the bulk of business managers, investors,
and nonhacker computer users who, through sheer weight of
numbers, tend to decide the overall direction of the
commercial software marketplace. Without a way to win these
people over, Raymond argues, programmers are doomed to
pursue their ideology on the periphery of society: When RMS
insists that we talk about “computer users’ rights,” he’s issuing
a dangerously attractive invitation to us to repeat old failures.
It’s one we should reject-not because his principles are wrong,
but because that kind of language, applied to software, simply
does not persuade anybody but us. In fact, it confuses and
repels most people outside our culture.4 Watching Stallman
deliver his political message in person, it is hard to see
anything confusing or repellent. Stallman’s appearance may
seem off-putting, but his message is logical. When an audience
member asks if, in shunning proprietary software, free
software proponents lose the ability to keep up with the latest
technological advancements, Stallman answers the question in
terms of his own personal beliefs. “I think that freedom is
more important than mere technical advance,” he says. “I
would always choose a less advanced free program rather than
a more advanced nonfree program, because I won’t give up
my freedom for something like that. My rule is, if I can’t share
it with you, I won’t take it.”

Such answers, however, reinforce the quasi-religious nature
of the Stallman message. Like a Jew keeping kosher or a
Mormon refusing to drink alcohol, Stallman paints his
decision to use free software in the place of proprietary in the
color of tradition and personal belief. As software evangelists
go, Stallman avoids forcing those beliefs down listeners’
throats. Then again, a listener rarely leaves a Stallman speech
not knowing where the true path to software righteousness
lies.

As if to drive home this message, Stallman punctuates his
speech with an unusual ritual. Pulling a black robe out of a
plastic grocery bag, Stallman puts it on. Out of a second bag,
he pulls a reflective yellow computer disk and places it on his
head. The crowd lets out a startled laugh.

“I am St. Ignucius of the Church of Emacs,” says Stallman,
raising his right hand in mock-blessing. “I bless your
computer, my child.”

<Graphic file:books/free_0801.png>

Stallman dressed as St. Ignucius. Photo by Wouter van
Oortmerssen.

The laughter turns into full-blown applause after a few
seconds. As audience members clap, the computer disk on
Stallman’s head catches the glare of an overhead light,
eliciting a perfect halo effect. In the blink of an eye, Stallman
goes from awkward haole to Russian religious icon.

” Emacs was initially a text editor,” says Stallman,
explaining the getup. “Eventually it became a way of life for
many and a religion for some. We call this religion the Church
of Emacs.”

The skit is a lighthearted moment of self-pardoy, a
humorous return-jab at the many people who might see
Stallman’s form of software asceticism as religious fanaticism
in disguise. It is also the sound of the other shoe dropping-
loudly. It’s as if, in donning his robe and halo, Stallman is
finally letting listeners of the hook, saying, “It’s OK to laugh. I
know I’m weird.”

Discussing the St. Ignucius persona afterward, Stallman
says he first came up with it in 1996, long after the creation of
Emacs but well before the emergence of the “open source”
term and the struggle for hacker-community leadership that
precipitated it. At the time, Stallman says, he wanted a way to
“poke fun at himself,” to remind listeners that, though
stubborn, Stallman was not the fanatic some made him out to
be. It was only later, Stallman adds, that others seized the
persona as a convenient way to play up his reputation as
software ideologue, as Eric Raymond did in an 1999 interview
with the linux.com web site: When I say RMS calibrates what
he does, I’m not belittling or accusing him of insincerity. I’m
saying that like all good communicators he’s got a theatrical
streak. Sometimes it’s conscious-have you ever seen him in his
St. Ignucius drag, blessing software with a disk platter on his
head? Mostly it’s unconscious; he’s just learned the degree of
irritating stimulus that works, that holds attention without
(usually) freaking people out.See “Guest Interview: Eric S.
Raymond,” Linux.com (May 18, 1999).
http://www.linux.com/interviews/19990518/8/ Stallman takes
issue with the Raymond analysis. “It’s simply my way of
making fun of myself,” he says. “The fact that others see it as
anything more than that is a reflection of their agenda, not
mine.”

That said, Stallman does admit to being a ham. “Are you
kidding?” he says at one point. “I love being the center of
attention.” To facilitate that process, Stallman says he once
enrolled in Toastmasters, an organization that helps members
bolster their public-speaking skills and one Stallman
recommends highly to others. He possesses a stage presence
that would be the envy of most theatrical performers and feels
a link to vaudevillians of years past. A few days after the Maui
High Performance Computing Center speech, I allude to the
1999 LinuxWorld performace and ask Stallman if he has a
Groucho Marx complex-i.e., the unwillingness to belong to
any club that would have him as a member. Stallman’s
response is immediate: “No, but I admire Groucho Marx in a
lot of ways and certainly have been in some things I say
inspired by him. But then I’ve also been inspired in some ways
by Harpo.”

The Groucho Marx influence is certainly evident in
Stallman’s lifelong fondness for punning. Then again, punning
and wordplay are common hacker traits. Perhaps the most
Groucho-like aspect of Stallman’s personality, however, is the
deadpan manner in which the puns are delivered. Most come
so stealthily-without even the hint of a raised eyebrow or
upturned smile-you almost have to wonder if Stallman’s
laughing at his audience more than the audience is laughing at
him.

Watching members of the Maui High Performance
Computer Center laugh at the St. Ignucius parody, such
concerns evaporate. While not exactly a standup act, Stallman
certainly possesses the chops to keep a roomful of engineers in
stitches. “To be a saint in the Church of Emacs does not
require celibacy, but it does require making a commitment to
living a life of moral purity,” he tells the Maui audience. “You

must exorcise the evil proprietary operating system from all
your computer and then install a wholly [holy] free operating
system. And then you must install only free software on top of
that. If you make this commitment and live by it, then you too
will be a saint in the Church of Emacs, and you too may have
a halo.”

The St. Ignucius skit ends with a brief inside joke. On most
Unix systems and Unix-related offshoots, the primary
competitor program to Emacs is vi, a text-editing program
developed by former UC Berkeley student and current Sun
Microsystems chief scientist, Bill Joy. Before doffing his
“halo,” Stallman pokes fun at the rival program. “People
sometimes ask me if it is a sin in the Church of Emacs to use
vi,” he says. “Using a free version of vi is not a sin; it is a
penance. So happy hacking.”

After a brief question-and-answer session, audience
members gather around Stallman. A few ask for autographs.
“I’ll sign this,” says Stallman, holding up one woman’s print
out of the GNU General Public License, “but only if you
promise me to use the term GNU/Linux instead of Linux and
tell all your friends to do likewise.”

The comment merely confirms a private observation. Unlike
other stage performers and political figures, Stallman has no
“off” mode. Aside from the St. Ignucius character, the
ideologue you see onstage is the ideologue you meet
backstage. Later that evening, during a dinner conversation in
which a programmer mentions his affinity for “open source”
programs, Stallman, between bites, upbraids his tablemate:
“You mean free software. That’s the proper way to refer to it.”

During the question-and-answer session, Stallman admits to
playing the pedagogue at times. “There are many people who

say, `Well, first let’s invite people to join the community, and
then let’s teach them about freedom.’ And that could be a
reasonable strategy, but what we have is almost everybody’s
inviting people to join the community, and hardly anybody’s
teaching them about freedom once they come in.”

The result, Stallman says, is something akin to a third-world
city. People move in, hoping to strike it rich or at the very least
to take part in a vibrant, open culture, and yet those who hold
the true power keep evolving new tricks and strategies-i.e.,
software patents-to keep the masses out. “You have millions of
people moving in and building shantytowns, but nobody’s
working on step two: getting them out of those shantytowns. If
you think talking about software freedom is a good strategy,
please join in doing step two. There are plenty working on step
one. We need more people working on step two.”

Working on “step two” means driving home the issue that
freedom, not acceptance, is the root issue of the free software
movement. Those who hope to reform the proprietary software
industry from the inside are on a fool’s errand. “Change from
the inside is risky,” Stallman stays. “Unless you’re working at
the level of a Gorbachev, you’re going to be neutralized.”

Hands pop up. Stallman points to a member of the golf
shirt-wearing contingent. “Without patents, how would you
suggest dealing with commercial espionage?”

“Well, those two questions have nothing to do with each
other, really,” says Stallman.

“But I mean if someone wants to steal another company’s
piece of software.”

Stallman’s recoils as if hit by a poisonous spray. “Wait a
second,” Stallman says. “Steal? I’m sorry, there’s so much
prejudice in that statement that the only thing I can say is that I

reject that prejudice. Companies that develop nonfree software
and other things keep lots and lots of trade secrets, and so
that’s not really likely to change. In the old days-even in the
1980s-for the most part programmers were not aware that
there were even software patents and were paying no attention
to them. What happened was that people published the
interesting ideas, and if they were not in the free software
movement, they kept secret the little details. And now they
patent those broad ideas and keep secret the little details. So as
far as what you’re describing, patents really make no
difference to it one way or another.”

“But if it doesn’t affect their publication,” a new audience
member jumps in, his voice trailing off almost as soon as he
starts speaking.

“But it does,” Stallman says. “Their publication is telling
you that this is an idea that’s off limits to the rest of the
community for 20 years. And what the hell good is that?
Besides, they’ve written it in such a hard way to read, both to
obfuscate the idea and to make the patent as broad as possible,
that it’s basically useless looking at the published information
to learn anything anyway. The only reason to look at patents is
to see the bad news of what you can’t do.”

The audience falls silent. The speech, which began at 3:15,
is now nearing the 5:00 whistle, and most listeners are already
squirming in their seats, antsy to get a jump start on the
weekend. Sensing the fatigue, Stallman glances around the
room and hastily shuts things down. “So it looks like we’re
done,” he says, following the observation with an auctioneer’s
“going, going, gone” to flush out any last-minute questioners.
When nobody throws their hand up, Stallman signs off with a
traditional exit line.

“Happy hacking,” he says. Endnotes

1. See “Grateful Dead Time Capsule: 1985-1995 North
American Tour Grosses.”
http://www.accessplace.com/gdtc/1197.htm 2. See Evan
Leibovitch, “Who’s Afraid of Big Bad Wolves,” ZDNet Tech
Update (December 15, 2000).

http://techupdate.zdnet.com/techupdate/stories/main/0Y/A>
3. For narrative purposes, I have hesitated to go
in-depth when describing Stallman’s full definition of
software “freedom.” The GNU Project web site lists four
fundamental components: The freedom to run a program,
for any purpose (freedom 0). The freedom to study how a
program works, and adapt it to your needs (freedom 1).
The freedom to redistribute copies of a program so you
can help your neighbor (freedom 2). The freedom to
improve the program, and release your improvements to
the public, so that the whole community benefits
(freedom 3). For more information, please visit “The
Free Software Definition” at
http://www.gnu.org/philosophy/free-sw.html. 4. See Eric
Raymond, “Shut Up and Show Them the Code,” online
essay, (June 28, 1999). 5. See “Guest Interview: Eric
S. Raymond,” Linux.com (May 18, 1999).
http://www.linux.com/interviews/19990518/8/

The GNU General Public License

By the spring of 1985, Richard Stallman had settled on the
GNU Project’s first milestone-a Lisp-based free software
version of Emacs. To meet this goal, however, he faced two
challenges. First, he had to rebuild Emacs in a way that made
it platform independent. Second, he had to rebuild the Emacs
Commune in a similar fashion.

The dispute with UniPress had highlighted a flaw in the
Emacs Commune social contract. Where users relied on
Stallman’s expert insight, the Commune’s rules held. In areas
where Stallman no longer held the position of alpha hacker-
pre-1984 Unix systems, for example-individuals and
companies were free to make their own rules.

The tension between the freedom to modify and the freedom
to exert authorial privilege had been building before
GOSMACS. The Copyright Act of 1976 had overhauled U.S.
copyright law, extending the legal protection of copyright to
software programs. According to Section 102(b) of the Act,
individuals and companies now possessed the ability to
copyright the “expression” of a software program but not the
“actual processes or methods embodied in the program.“See
Hal Abelson, Mike Fischer, and Joanne Costello, “Software
and Copyright Law,” updated version (1998). Translated,
programmers and companies had the ability to treat software
programs like a story or song. Other programmers could take
inspiration from the work, but to make a direct copy or
nonsatirical derivative, they first had to secure permission
from the original creator. Although the new law guaranteed
that even programs without copyright notices carried copyright
protection, programmers quickly asserted their rights,
attaching coypright notices to their software programs.

At first, Stallman viewed these notices with alarm. Rare was
the software program that didn’t borrow source code from past
programs, and yet, with a single stroke of the president’s pen,
Congress had given programmers and companies the power to
assert individual authorship over communally built programs.
It also injected a dose of formality into what had otherwise
been an informal system. Even if hackers could demonstrate
how a given program’s source-code bloodlines stretched back

years, if not decades, the resources and money that went into
battling each copyright notice were beyond most hackers’
means. Simply put, disputes that had once been settled hacker-
to-hacker were now settled lawyer-to-lawyer. In such a system,
companies, not hackers, held the automatic advantage.

Proponents of software copyright had their counter-
arguments: without copyright, works might otherwise slip into
the public domain. Putting a copyright notice on a work also
served as a statement of quality. Programmers or companies
who attached their name to the copyright attached their
reputations as well. Finally, it was a contract, as well as a
statement of ownership. Using copyright as a flexible form of
license, an author could give away certain rights in exchange
for certain forms of behavior on the part of the user. For
example, an author could give away the right to suppress
unauthorized copies just so long as the end user agreed not to
create a commercial offshoot.

It was this last argument that eventually softened Stallman’s
resistance to software copyright notices. Looking back on the
years leading up to the GNU Project, Stallman says he began
to sense the beneficial nature of copyright sometime around
the release of Emacs 15.0, the last significant pre-GNU Project
upgrade of Emacs. “I had seen email messages with copyright
notices plus simple `verbatim copying permitted’ licenses,”
Stallman recalls. “Those definitely were [an] inspiration.”

For Emacs 15, Stallman drafted a copyright that gave users
the right to make and distribute copies. It also gave users the
right to make modified versions, but not the right to claim sole
ownership of those modified versions, as in the case of
GOSMACS.

Although helpful in codifying the social contract of the
Emacs Commune, the Emacs 15 license remained too
“informal” for the purposes of the GNU Project, Stallman
says. Soon after starting work on a GNU version of Emacs,
Stallman began consulting with the other members of the Free
Software Foundation on how to shore up the license’s
language. He also consulted with the attorneys who had helped
him set up the Free Software Foundation.

Mark Fischer, a Boston attorney specializing in intellectual-
property law, recalls discussing the license with Stallman
during this period. “Richard had very strong views about how
it should work,” Fischer says, “He had two principles. The
first was to make the software absolutely as open as possible.
The second was to encourage others to adopt the same
licensing practices.”

Encouraging others to adopt the same licensing practices
meant closing off the escape hatch that had allowed privately
owned versions of Emacs to emerge. To close that escape
hatch, Stallman and his free software colleagues came up with
a solution: users would be free to modify GNU Emacs just so
long as they published their modifications. In addition, the
resulting “derivative” works would also have carry the same
GNU Emacs License.

The revolutionary nature of this final condition would take a
while to sink in. At the time, Fischer says, he simply viewed
the GNU Emacs License as a simple contract. It put a price tag
on GNU Emacs’ use. Instead of money, Stallman was charging
users access to their own later modifications. That said,
Fischer does remember the contract terms as unique.

“I think asking other people to accept the price was, if not
unique, highly unusual at that time,” he says.

The GNU Emacs License made its debut when Stallman
finally released GNU Emacs in 1985. Following the release,
Stallman welcomed input from the general hacker community
on how to improve the license’s language. One hacker to take
up the offer was future software activist John Gilmore, then
working as a consultant to Sun Microsystems. As part of his
consulting work, Gilmore had ported Emacs over to SunOS,
the company’s in-house version of Unix. In the process of
doing so, Gilmore had published the changes as per the
demands of the GNU Emacs License. Instead of viewing the
license as a liability, Gilmore saw it as clear and concise
expression of the hacker ethos. “Up until then, most licenses
were very informal,” Gilmore recalls.

As an example of this informality, Gilmore cites a copyright
notice for trn, a Unix utility. Written by Larry Wall, future
creator of the Perl programming language, patch made it
simple for Unix programmers to insert source-code fixes-”
patches” in hacker jargon-into any large program. Recognizing
the utility of this feature, Wall put the following copyright
notice in the program’s accompanying README file:

Copyright (c) 1985, Larry Wall You may copy the trn kit in
whole or in part as long as you don’t try to make money off it,
or pretend that you wrote it.See Trn Kit README.
http://www.za.debian.org/doc/trn/trn-readme

Such statements, while reflective of the hacker ethic, also
reflected the difficulty of translating the loose, informal nature
of that ethic into the rigid, legal language of copyright. In
writing the GNU Emacs License, Stallman had done more
than close up the escape hatch that permitted proprietary
offshoots. He had expressed the hacker ethic in a manner
understandable to both lawyer and hacker alike.

It wasn’t long, Gilmore says, before other hackers began
discussing ways to “port” the GNU Emacs License over to
their own programs. Prompted by a conversation on Usenet,
Gilmore sent an email to Stallman in November, 1986,
suggesting modification: You should probably remove
“EMACS” from the license and replace it with “SOFTWARE”
or something. Soon, we hope, Emacs will not be the biggest
part of the GNU system, and the license applies to all of it.See
John Gilmore, quoted from email to author. Gilmore wasn’t
the only person suggesting a more general approach. By the
end of 1986, Stallman himself was at work with GNU
Project’s next major milestone, a source-code debugger, and
was looking for ways to revamp the Emacs license so that it
might apply to both programs. Stallman’s solution: remove all
specific references to Emacs and convert the license into a
generic copyright umbrella for GNU Project software. The
GNU General Public License, GPL for short, was born.

In fashioning the GPL, Stallman followed the software
convention of using decimal numbers to indicate prototype
versions and whole numbers to indicate mature versions.
Stallman published Version 1.0 of the GPL in 1989 (a project
Stallman was developing in 1985), almost a full year after the
release of the GNU Debugger, Stallman’s second major foray
into the realm of Unix programming. The license contained a
preamble spelling out its political intentions:

The General Public License is designed to make sure that
you have the freedom to give away or sell copies of free
software, that you receive source code or can get it if you want
it, that you can change the software or use pieces of it in new
free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that
forbid anyone to deny you these rights or to ask you to

surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software,
or if you modify it.See Richard Stallman, et al., “GNU
General Public License: Version 1,” (February, 1989).
http://www.gnu.org/copyleft/copying-1.0.html

In fashioning the GPL, Stallman had been forced to make an
additional adjustment to the informal tenets of the old Emacs
Commune. Where he had once demanded that Commune
members publish any and all changes, Stallman now
demanded publication only in instances when programmers
circulated their derivative versions in the same public manner
as Stallman. In other words, programmers who simply
modified Emacs for private use no longer needed to send the
source-code changes back to Stallman. In what would become
a rare compromise of free software doctrine, Stallman slashed
the price tag for free software. Users could innovate without
Stallman looking over their shoulders just so long as they
didn’t bar Stallman and the rest of the hacker community from
future exchanges of the same program.

Looking back, Stallman says the GPL compromise was
fueled by his own dissatisfaction with the Big Brother aspect
of the original Emacs Commune social contract. As much as
he liked peering into other hackers’ systems, the knowledge
that some future source-code maintainer might use that power
to ill effect forced him to temper the GPL.

“It was wrong to require people to publish all changes,”
says Stallman. “It was wrong to require them to be sent to one
privileged developer. That kind of centralization and privilege
for one was not consistent with a society in which all had
equal rights.”

As hacks go, the GPL stands as one of Stallman’s best. It
created a system of communal ownership within the normally
proprietary confines of copyright law. More importantly, it
demonstrated the intellectual similarity between legal code and
software code. Implicit within the GPL’s preamble was a
profound message: instead of viewing copyright law with
suspicion, hackers should view it as yet another system
begging to be hacked.

“The GPL developed much like any piece of free software
with a large community discussing its structure, its respect or
the opposite in their observation, needs for tweaking and even
to compromise it mildly for greater acceptance,” says Jerry
Cohen, another attorney who helped Stallman with the
creation of the license. “The process worked very well and
GPL in its several versions has gone from widespread
skeptical and at times hostile response to widespread
acceptance.”

In a 1986 interview with Byte magazine, Stallman summed
up the GPL in colorful terms. In addition to proclaiming
hacker values, Stallman said, readers should also “see it as a
form of intellectual jujitsu, using the legal system that
software hoarders have set up against them.“See David Betz
and Jon Edwards, “Richard Stallman discusses his public-
domain [sic] Unix-compatible software system with BYTE
editors,” BYTE (July, 1996). (Reprinted on the GNU Project
web site: http://www.gnu.org/gnu/byte-interview.html.) This
interview offers an interesting, not to mention candid, glimpse
at Stallman’s political attitudes during the earliest days of the
GNU Project. It is also helpful in tracing the evolution of
Stallman’s rhetoric. Describing the purpose of the GPL,
Stallman says, “I’m trying to change the way people approach
knowledge and information in general. I think that to try to

own knowledge, to try to control whether people are allowed
to use it, or to try to stop other people from sharing it, is
sabotage.” Contrast this with a statement to the author in
August 2000: “I urge you not to use the term `intellectual
property’ in your thinking. It will lead you to misunderstand
things, because that term generalizes about copyrights, patents,
and trademarks. And those things are so different in their
effects that it is entirely foolish to try to talk about them at
once. If you hear somebody saying something about
intellectual property, without quotes, then he’s not thinking
very clearly and you shouldn’t join.” Years later, Stallman
would describe the GPL’s creation in less hostile terms. “I was
thinking about issues that were in a sense ethical and in a
sense political and in a sense legal,” he says. “I had to try to do
what could be sustained by the legal system that we’re in. In
spirit the job was that of legislating the basis for a new society,
but since I wasn’t a government, I couldn’t actually change
any laws. I had to try to do this by building on top of the
existing legal system, which had not been designed for
anything like this.”

About the time Stallman was pondering the ethical,
political, and legal issues associated with free software, a
California hacker named Don Hopkins mailed him a manual
for the 68000 microprocessor. Hopkins, a Unix hacker and
fellow science-fiction buff, had borrowed the manual from
Stallman a while earlier. As a display of gratitude, Hopkins
decorated the return envelope with a number of stickers
obtained at a local science-fiction convention. One sticker in
particular caught Stallman’s eye. It read, “Copyleft (L), All
Rights Reversed.” Following the release of the first version of
GPL, Stallman paid tribute to the sticker, nicknaming the free
software license “Copyleft.” Over time, the nickname and its

shorthand symbol, a backwards “C,” would become an official
Free Software Foundation synonym for the GPL.

The German sociologist Max Weber once proposed that all
great religions are built upon the “routinization” or
“institutionalization” of charisma. Every successful religion,
Weber argued, converts the charisma or message of the
original religious leader into a social, political, and ethical
apparatus more easily translatable across cultures and time.

While not religious per se, the GNU GPL certainly qualifies
as an interesting example of this “routinization” process at
work in the modern, decentralized world of software
development. Since its unveiling, programmers and companies
who have otherwise expressed little loyalty or allegiance to
Stallman have willingly accepted the GPL bargain at face
value. A few have even accepted the GPL as a preemptive
protective mechanism for their own software programs. Even
those who reject the GPL contract as too compulsory, still
credit it as influential.

One hacker falling into this latter group was Keith Bostic, a
University of California employee at the time of the GPL 1.0
release. Bostic’s department, the Computer Systems Research
Group (SRG), had been involved in Unix development since
the late 1970s and was responsible for many key parts of Unix,
including the TCP/IP networking protocol, the cornerstone of
modern Internet communications. By the late 1980s, AT&T,
the original owner of the Unix brand name, began to focus on
commercializing Unix and began looking to the Berkeley
Software Distribution, or BSD, the academic version of Unix
developed by Bostic and his Berkeley peers, as a key source of
commercial technology.

Although the Berkeley BSD source code was shared among
researchers and commercial programmers with a source-code
license, this commercialization presented a problem. The
Berkeley code was intermixed with proprietary AT&T code.
As a result, Berkeley distributions were available only to
institutions that already had a Unix source license from AT&T.
As AT&T raised its license fees, this arrangement, which had
at first seemed innocuous, became increasingly burdensome.

Hired in 1986, Bostic had taken on the personal project of
porting BSD over to the Digital Equipment Corporation’s
PDP-11 computer. It was during this period, Bostic says, that
he came into close interaction with Stallman during Stallman’s
occasional forays out to the west coast. “I remember vividly
arguing copyright with Stallman while he sat at borrowed
workstations at CSRG,” says Bostic. “We’d go to dinner
afterward and continue arguing about copyright over dinner.”

The arguments eventually took hold, although not in the
way Stallman would have liked. In June, 1989, Berkeley
separated its networking code from the rest of the AT&T-
owned operating system and distributed it under a University
of California license. The contract terms were liberal. All a
licensee had to do was give credit to the university in
advertisements touting derivative programs.The University of
California’s “obnoxious advertising clause” would later prove
to be a problem. Looking for a less restrictive alternative to the
GPL, some hackers used the University of California,
replacing “University of California” with the name of their
own instution. The result: free software programs that
borrowed from dozens of other programs would have to cite
dozens of institutions in advertisements. In 1999, after a
decade of lobbying on Stallman’s part, the University of
California agreed to drop this clause. In contrast to the GPL,

proprietary offshoots were permissible. Only one problem
hampered the license’s rapid adoption: the BSD Networking
release wasn’t a complete operating system. People could
study the code, but it could only be run in conjunction with
other proprietary-licensed code.

Over the next few years, Bostic and other University of
California employees worked to replace the missing
components and turn BSD into a complete, freely
redistributable operating system. Although delayed by a legal
challenge from Unix Systems Laboratories-the AT&T spin-off
that retained ownership of the Unix brand name-the effort
would finally bear fruit in the early 1990s. Even before then,
however, many of the Berkeley utilities would make their way
into Stallman’s GNU Project.

“I think it’s highly unlikely that we ever would have gone as
strongly as we did without the GNU influence,” says Bostic,
looking back. “It was clearly something where they were
pushing hard and we liked the idea.”

By the end of the 1980s, the GPL was beginning to exert a
gravitational effect on the free software community. A
program didn’t have to carry the GPL to qualify as free
software-witness the case of the BSD utilities-but putting a
program under the GPL sent a definite message. “I think the
very existence of the GPL inspired people to think through
whether they were making free software, and how they would
license it,” says Bruce Perens, creator of Electric Fence, a
popular Unix utility, and future leader of the Debian
GNU/Linux development team. A few years after the release
of the GPL, Perens says he decided to discard Electric Fence’s
homegrown license in favor of Stallman’s lawyer-vetted
copyright. “It was actually pretty easy to do,” Perens recalls.

Rich Morin, the programmer who had viewed Stallman’s
initial GNU announcement with a degree of skepticism, recalls
being impressed by the software that began to gather under the
GPL umbrella. As the leader of a SunOS user group, one of
Morin’s primary duties during the 1980s had been to send out
distribution tapes containing the best freeware or free software
utilities. The job often mandated calling up original program
authors to verify whether their programs were copyright
protected or whether they had been consigned to the public
domain. Around 1989, Morin says, he began to notice that the
best software programs typically fell under the GPL license.
“As a software distributor, as soon as I saw the word GPL, I
knew I was home free,” recalls Morin.

To compensate for the prior hassles that went into compiling
distribution tapes to the Sun User Group, Morin had charged
recipients a convenience fee. Now, with programs moving
over to the GPL, Morin was suddenly getting his tapes put
together in half the time, turning a tidy profit in the process.
Sensing a commercial opportunity, Morin rechristened his
hobby as a business: Prime Time Freeware.

Such commercial exploitation was completely within the
confines of the free software agenda. “When we speak of free
software, we are referring to freedom, not price,” advised
Stallman in the GPL’s preamble. By the late 1980s, Stallman
had refined it to a more simple mnemonic: “Don’t think free as
in free beer; think free as in free speech.”

For the most part, businesses ignored Stallman’s entreaties.
Still, for a few entrepreneurs, the freedom associated with free
software was the same freedom associated with free markets.
Take software ownership out of the commercial equation, and
you had a situation where even the smallest software company
was free to compete against the IBMs and DECs of the world.

One of the first entrepreneurs to grasp this concept was
Michael Tiemann, a software programmer and graduate
student at Stanford University. During the 1980s, Tiemann had
followed the GNU Project like an aspiring jazz musician
following a favorite artist. It wasn’t until the release of the
GNU C Compiler in 1987, however, that he began to grasp the
full potential of free software. Dubbing GCC a “bombshell,”
Tiemann says the program’s own existence underlined
Stallman’s determination as a programmer.

“Just as every writer dreams of writing the great American
novel, every programmer back in the 1980s talked about
writing the great American compiler,” Tiemman recalls.
“Suddenly Stallman had done it. It was very humbling.”

“You talk about single points of failure, GCC was it,”
echoes Bostic. “Nobody had a compiler back then, until GCC
came along.”

Rather than compete with Stallman, Tiemann decided to
build on top of his work. The original version of GCC
weighed in at 110,000 lines of code, but Tiemann recalls the
program as surprisingly easy to understand. So easy in fact
that Tiemann says it took less than five days to master and
another week to port the software to a new hardware platform,
National Semiconductor’s 32032 microchip. Over the next
year, Tiemann began playing around with the source code,
creating a native compiler for the C+ programming language.
One day, while delivering a lecture on the program at Bell
Labs, Tiemann ran into some AT&T developers struggling to
pull off the same thing.

“There were about 40 or 50 people in the room, and I asked
how many people were working on the native code compiler,”
Tiemann recalls. “My host said the information was

confidential but added that if I took a look around the room I
might get a good general idea.”

It wasn’t long after, Tiemann says, that the light bulb went
off in his head. “I had been working on that project for six
months,” Tiemann says. I just thought to myself, whether it’s
me or the code this is a level of efficiency that the free market
should be ready to reward.”

Tiemann found added inspiration in the GNU Manifesto,
which, while excoriating the greed of some software vendors,
encourages other vendors to consider the advantages of free
software from a consumer point of view. By removing the
power of monopoly from the commerical software question,
the GPL makes it possible for the smartest vendors to compete
on the basis of service and consulting, the two most profit-rich
corners of the software marketplace.

In a 1999 essay, Tiemann recalls the impact of Stallman’s
Manifesto. “It read like a socialist polemic, but I saw
something different. I saw a business plan in disguise.“7. See
Michael Tiemann, “Future of Cygnus Solutions: An
Entrepreneur’s Account,” Open Sources (O’Reilly &
Associates, Inc., 1999): 139.

Teaming up with John Gilmore, another GNU Project fan,
Tiemann launched a software consulting service dedicated to
customizing GNU programs. Dubbed Cygnus Support, the
company signed its first development contract in February,
1990. By the end of the year, the company had $725,000 worth
of support and development contracts.

GNU Emacs, GDB, and GCC were the “big three” of
developer-oriented tools, but they weren’t the only ones
developed by Stallman during the GNU Project’s first half
decade. By 1990, Stallman had also generated GNU versions

of the Bourne Shell (rechristened the Bourne Again Shell, or
BASH), YACC (rechristened Bison), and awk (rechristened
gawk). Like GCC , every GNU program had to be designed to
run on multiple systems, not just a single vendor’s platform. In
the process of making programs more flexible, Stallman and
his collaborators often made them more useful as well.

Recalling the GNU universalist approach, Prime Time
Freeware’s Morin points to a critical, albeit mundane, software
package called hello. “It’s the hello world program which is
five lines of C, packaged up as if it were a GNU distribution,”
Morin says. “And so it’s got the Texinfo stuff and the
configure stuff. It’s got all the other software engineering goo
that the GNU Project has come up with to allow packages to
port to all these different environments smoothly. That’s
tremendously important work, and it affects not only all of
[Stallman’s] software, but also all of the other GNU Project
software.”

According to Stallman, improving software programs was
secondary to building them in the first place. “With each piece
I may or may not find a way to improve it,” said Stallman to
Byte. “To some extent I am getting the benefit of
reimplementation, which makes many systems much better. To
some extent it’s because I have been in the field a long time
and worked on many other systems. I therefore have many
ideas to bring to bear.“See Richard Stallman, BYTE (1986).

Nevertheless, as GNU tools made their mark in the late
1980s, Stallman’s AI Lab-honed reputation for design
fastidiousness soon became legendary throughout the entire
software-development community.

Jeremy Allison, a Sun user during the late 1980s and
programmer destined to run his own free software project,

Samba, in the 1990s, recalls that reputation with a laugh.
During the late 1980s, Allison began using Emacs. Inspired by
the program’s community-development model, Allison says he
sent in a snippet of source code only to have it rejected by
Stallman.

“It was like the Onion headline,” Allison says.
“`Child’s prayers to God answered: No.’”

Stallman’s growing stature as a software programmer,
however, was balanced by his struggles as a project manager.
Although the GNU Project moved from success to success in
creation of developer-oriented tools, its inability to generate a
working kernel-the central “traffic cop” program in all Unix
systems that determines which devices and applications get
access to the microprocessor and when-was starting to elicit
grumbles as the 1980s came to a close. As with most GNU
Project efforts, Stallman had started kernel development by
looking for an existing program to modify. According to a
January 1987 “Gnusletter,” Stallman was already working to
overhaul TRIX, a Unix kernel developed at MIT.

A review of GNU Project “GNUsletters” of the late 1980s
reflects the management tension. In January, 1987, Stallman
announced to the world that the GNU Project was working to
overhaul TRIX, a Unix kernel developed at MIT. A year later,
in February of 1988, the GNU Project announced that it had
shifted its attentions to Mach, a lightweight “micro-kernel”
developed at Carnegie Mellon. All told, however, official
GNU Project kernel development wouldn’t commence until
1990.See “HURD History.”
http://www.gnu.org/software/hurd/history.html

The delays in kernel development were just one of many
concerns weighing on Stallman during this period. In 1989,

Lotus Development Corporation filed suit against rival
software company, Paperback Software International, for
copying menu commands in Lotus’ popular 1-2-3 Spreadsheet
program. Lotus’ suit, coupled with the Apple -Microsoft “look
and feel” battle, provided a troublesome backdrop for the
GNU Project. Although both suits fell outside the scope of the
GNU Project, both revolved around operating systems and
software applications developed for the personal computer, not
Unix-compatible hardware systems-they threatened to impose
a chilling effect on the entire culture of software development.
Determined to do something, Stallman recruited a few
programmer friends and composed a magazine ad blasting the
lawsuits. He then followed up the ad by helping to organize a
group to protest the corporations filing the suit. Calling itself
the League of Programming Freedom, the group held protests
outside the offices of Lotus, Inc. and the Boston courtroom
hosting the Lotus trial.

The protests were notable.According to a League of
Programming Freedom Press, the protests were notable for
featuring the first hexadecimal protest chant: 1-2-3-4, toss the
lawyers out the door; 5-6-7-8, innovate don’t litigate; 9-A-B-
C, 1-2-3 is not for me; D-E-F-O, look and feel have got to go

http://lpf.ai.mit.edu/Links/prep.ai.mit.edu/demo.final.release
 They document the evolving nature of software
industry. Applications had quietly replaced operating
systems as the primary corporate battleground. In its
unfulfilled quest to build a free software operating
system, the GNU Project seemed hopelessly behind the
times. Indeed, the very fact that Stallman had felt it
necessary to put together an entirely new group
dedicated to battling the “look and feel” lawsuits
reinforced that obsolescence in the eyes of some observers.

In 1990, the John D. and Catherine T. MacArthur
Foundation cerified Stallman’s genius status when it granted
Stallman a MacArthur fellowship, therefore making him a
recipient for the organization’s so-called “genius grant.” The
grant, a $240,000 reward for launching the GNU Project and
giving voice to the free software philosophy, relieved a
number of short-term concerns. First and foremost, it gave
Stallman, a nonsalaried employee of the FSF who had been
supporting himself through consulting contracts, the ability to
devote more time to writing GNU code.I use the term
“writing” here loosely. About the time of the MacArthur
award, Stallman began suffering chronic pain in his hands and
was dictating his work to FSF-employed typists. Although
some have speculated that the hand pain was the result of
repetitive stress injury, or RSI, an injury common among
software programmers, Stallman is not 100% sure. “It was
NOT carpal tunnel syndrome,” he writes. “My hand problem
was in the hands themselves, not in the wrists.” Stallman has
since learned to work without typists after switching to a
keyboard with a lighter touch.

Ironically, the award also made it possible for Stallman to
vote. Months before the award, a fire in Stallman’s apartment
house had consumed his few earthly possessions. By the time
of the award, Stallman was listing himself as a “squatter”See
Reuven Lerner, “Stallman wins $240,000 MacArthur award,”
MIT, The Tech (July 18, 1990). http://the-
tech.mit.edu/V110/N30/rms.30n.html at 545 Technology
Square. “[The registrar of voters] didn’t want to accept that as
my address,” Stallman would later recall. “A newspaper article
about the MacArthur grant said that and then they let me
register.“See Michael Gross, “Richard Stallman: High School

Misfit, Symbol of Free Software, MacArthur-certified Genius”
(1999).

Most importantly, the MacArthur money gave Stallman
more freedom. Already dedicated to the issue of software
freedom, Stallman chose to use the additional freedom to
increase his travels in support of the GNU Project mission.

Interestingly, the ultimate success of the GNU Project and
the free software movement in general would stem from one
of these trips. In 1990, Stallman paid a visit to the Polytechnic
University in Helsinki, Finland. Among the audience members
was 21-year-old Linus Torvalds, future developer of the Linux
kernel-the free software kernel destined to fill the GNU
Project’s most sizable gap.

A student at the nearby University of Helsinki at the time,
Torvalds regarded Stallman with bemusement. “I saw, for the
first time in my life, the stereotypical long-haired, bearded
hacker type,” recalls Torvalds in his 2001 autobiography Just
for Fun. “We don’t have much of them in Helsinki.“See Linus
Torvalds and David Diamond, Just For Fun: The Story of an
Accidentaly Revolutionary (HarperCollins Publishers, Inc.,
2001): 58-59.

While not exactly attuned to the “sociopolitical” side of the
Stallman agenda, Torvalds nevertheless appreciated the
agenda’s underlying logic: no programmer writes error-free
code. By sharing software, hackers put a program’s
improvement ahead of individual motivations such as greed or
ego protection.

Like many programmers of his generation, Torvalds had cut
his teeth not on mainframe computers like the IBM 7094, but
on a motley assortment of home-built computer systems. As
university student, Torvalds had made the step up from C

programming to Unix, using the university’s MicroVAX. This
ladder-like progression had given Torvalds a different
perspective on the barriers to machine access. For Stallman,
the chief barriers were bureaucracy and privilege. For
Torvalds, the chief barriers were geography and the harsh
Helsinki winter. Forced to trek across the University of
Helsinki just to log in to his Unix account, Torvalds quickly
began looking for a way to log in from the warm confines of
his off-campus apartment.

The search led Torvalds to the operating system Minix, a
lightweight version of Unix developed for instructional
purposes by Dutch university professor Andrew Tanenbaum.
The program fit within the memory confines of a 386 PC, the
most powerful machine Torvalds could afford, but still lacked
a few necessary features. It most notably lacked terminal
emulation, the feature that allowed Torvalds’ machine to
mimic a university terminal, making it possible to log in to the
MicroVAX from home.

During the summer of 1991, Torvalds rewrote Minix from
the ground up, adding other features as he did so. By the end
of the summer, Torvalds was referring to his evolving work as
the “GNU/Emacs of terminal emulation programs.“See Linus
Torvalds and David Diamond, Just For Fun: The Story of an
Accidentaly Revolutionary (HarperCollins Publishers, Inc.,
2001): 78. Feeling confident, he solicited a Minix newsgroup
for copies of the POSIX standards, the software blue prints
that determined whether a program was Unix compatible. A
few weeks later, Torvalds was posting a message eerily
reminiscent of Stallman’s original 1983 GNU posting:

Hello everybody out there using minix-

I’m doing a (free) operating system (just a hobby, won’t be
big and professional like gnu for 386 (486) AT clones). This
has been brewing since April, and is starting to get ready. I’d
like any feedback on things people like/dislike in minix, as my
OS resembles it somewhat (same physical layout of the file-
system (due to practical reasons) among other things).See
“Linux 10th Anniversary.” http://www.linux10.org/history/

The posting drew a smattering of responses and within a
month, Torvalds had posted a 0.01 version of the operating
system-i.e., the earliest possible version fit for outside review-
on an Internet FTP site. In the course of doing so, Torvalds
had to come up with a name for the new system. On his own
PC hard drive, Torvalds had saved the program as Linux, a
name that paid its respects to the software convention of
giving each Unix variant a name that ended with the letter X.
Deeming the name too “egotistical,” Torvalds changed it to
Freax, only to have the FTP site manager change it back.

Although Torvalds had set out build a full operating system,
both he and other developers knew at the time that most of the
functional tools needed to do so were already available, thanks
to the work of GNU, BSD, and other free software developers.
One of the first tools the Linux development team took
advantage of was the GNU C Compiler, a tool that made it
possible to process programs written in the C programming
language.

Integrating GCC improved the performance of Linux. It also
raised issues. Although the GPL’s “viral” powers didn’t apply
to the Linux kernel, Torvald’s willingness to borrow GCC for
the purposes of his own free software operating system
indicated a certain obligation to let other users borrow back.
As Torvalds would later put it: “I had hoisted myself up on the
shoulders of giants.“See Linus Torvalds and David Diamond,

Just For Fun: The Story of an Accidentaly Revolutionary
(HarperCollins Publishers, Inc., 2001): 96-97. Not
surprisingly, he began to think about what would happen when
other people looked to him for similar support. A decade after
the decision, Torvalds echoes the Free Software Foundation’s
Robert Chassel when he sums up his thoughts at the time: You
put six months of your life into this thing and you want to
make it available and you want to get something out of it, but
you don’t want people to take advantage of it. I wanted people
to be able to see [Linux], and to make changes and
improvements to their hearts’ content. But I also wanted to
make sure that what I got out of it was to see what they were
doing. I wanted to always have access to the sources so that if
they made improvements, I could make those improvements
myself.See Linus Torvalds and David Diamond, Just For Fun:
The Story of an Accidentaly Revolutionary (HarperCollins
Publishers, Inc., 2001): 94-95. When it was time to release the
0.12 version of Linux, the first to include a fully integrated
version of GCC, Torvalds decided to voice his allegiance with
the free software movement. He discarded the old kernel
license and replaced it with the GPL. The decision triggered a
porting spree, as Torvalds and his collaborators looked to other
GNU programs to fold into the growing Linux stew. Within
three years, Linux developers were offering their first
production release, Linux 1.0, including fully modified
versions of GCC, GDB, and a host of BSD tools.

By 1994, the amalgamated operating system had earned
enough respect in the hacker world to make some observers
wonder if Torvalds hadn’t given away the farm by switching to
the GPL in the project’s initial months. In the first issue of
Linux Journal, publisher Robert Young sat down with Torvalds
for an interview. When Young asked the Finnish programmer

if he felt regret at giving up private ownership of the Linux
source code, Torvalds said no. “Even with 20/20 hindsight,”
Torvalds said, he considered the GPL “one of the very best
design decisions” made during the early stages of the Linux
project.See Robert Young, “Interview with Linus, the Author
of Linux,” Linux Journal (March 1, 1994).
http://www.linuxjournal.com/article.php?sid=2736

That the decision had been made with zero appeal or
deference to Stallman and the Free Software Foundation
speaks to the GPL’s growing portability. Although it would
take a few years to be recognized by Stallman, the
explosiveness of Linux development conjured flashbacks of
Emacs. This time around, however, the innovation triggering
the explosion wasn’t a software hack like Control-R but the
novelty of running a Unix-like system on the PC architecture.
The motives may have been different, but the end result
certainly fit the ethical specifications: a fully functional
operating system composed entirely of free software.

As his initial email message to the comp.os.minix
newsgroup indicates, it would take a few months before
Torvalds saw Linux as anything less than a holdover until the
GNU developers delivered on the HURD kernel. This initial
unwillingness to see Linux in political terms would represent a
major blow to the Free Software Foundation.

As far as Torvalds was concerned, he was simply the latest
in a long line of kids taking apart and reassembling things just
for fun. Nevertheless, when summing up the runaway success
of a project that could have just as easily spent the rest of its
days on an abandoned computer hard drive, Torvalds credits
his younger self for having the wisdom to give up control and
accept the GPL bargain.

“I may not have seen the light,” writes Torvalds, reflecting
on Stallman’s 1991 Polytechnic University speech and his
subsequent decision to switch to the GPL. “But I guess
something from his speech sunk in .“See Linus Torvalds and
David Diamond, Just For Fun: The Story of an Accidentaly
Revolutionary (HarperCollins Publishers, Inc., 2001): 59.
interview offers an interesting, not to mention candid, glimpse
at Stallman’s political attitudes during the earliest days of the
GNU Project. It is also helpful in tracing the evolution of
Stallman’s rhetoric. Describing the purpose of the GPL,
Stallman says, “I’m trying to change the way people approach
knowledge and information in general. I think that to try to
own knowledge, to try to control whether people are allowed
to use it, or to try to stop other people from sharing it, is
sabotage.” Contrast this with a statement to the author in
August 2000: “I urge you not to use the term `intellectual
property’ in your thinking. It will lead you to misunderstand
things, because that term generalizes about copyrights, patents,
and trademarks. And those things are so different in their
effects that it is entirely foolish to try to talk about them at
once. If you hear somebody saying something about
intellectual property, without quotes, then he’s not thinking
very clearly and you shouldn’t join.”

GNU/Linux

By 1993, the free software movement was at a crossroads.
To the optimistically inclined, all signs pointed toward success
for the hacker cultur. Wired magazine, a funky, new
publication offering stories on data encryption, Usenet, and
software freedom, was flying off magazine racks. The Internet,
once a slang term used only by hackers and research scientists,
had found its way into mainstream lexicon. Even President
Clinton was using it. The personal computer, once a hobbyist’s

toy, had grown to full-scale respectability, giving a whole new
generation of computer users access to hacker-built software.
And while the GNU Project had not yet reached its goal of a
fully intact, free software operating system, curious users
could still try Linux in the interim.

Any way you sliced it, the news was good, or so it seemed.
After a decade of struggle, hackers and hacker values were
finally gaining acceptance in mainstream society. People were
getting it.

Or were they? To the pessimistically inclined, each sign of
acceptance carried its own troubling countersign. Sure, being a
hacker was suddenly cool, but was cool good for a community
that thrived on alienation? Sure, the White House was saying
all the right things about the Internet, even going so far as to
register its own domain name, whitehouse.gov, but it was also
meeting with the companies, censorship advocates, and law-
enforcement officials looking to tame the Internet’s Wild West
culture. Sure, PCs were more powerful, but in commoditizing
the PC marketplace with its chips, Intel had created a situation
in which proprietary software vendors now held the power.
For every new user won over to the free software cause via
Linux, hundreds, perhaps thousands, were booting up
Microsoft Windows for the first time.

Finally, there was the curious nature of Linux itself.
Unrestricted by design bugs (like GNU) and legal disputes
(like BSD), Linux’ high-speed evolution had been so
unplanned, its success so accidental, that programmers closest
to the software code itself didn’t know what to make of it.
More compilation album than operating system, it was
comprised of a hacker medley of greatest hits: everything from
GCC, GDB, and glibc (the GNU Project’s newly developed C
Library) to X (a Unix-based graphic user interface developed

by MIT’s Laboratory for Computer Science) to BSD-
developed tools such as BIND (the Berkeley Internet Naming
Daemon, which lets users substitute easy-to-remember Internet
domain names for numeric IP addresses) and TCP/IP. The
arch’s capstone, of course, was the Linux kernel-itself a bored-
out, super-charged version of Minix. Rather than building their
operating system from scratch, Torvalds and his rapidly
expanding Linux development team had followed the old
Picasso adage, “good artists borrow; great artists steal.” Or as
Torvalds himself would later translate it when describing the
secret of his success: “I’m basically a very lazy person who
likes to take credit for things other people actually
do.“Torvalds has offered this quote in many different settings.
To date, however, the quote’s most notable appearance is in
the Eric Raymond essay, “The Cathedral and the Bazaar”
(May, 1997).

http://www.tuxedo.org/~esr/writings/cathedral-
bazaar/cathedral-bazaar/index.html

Such laziness, while admirable from an efficiency
perspective, was troubling from a political perspective. For
one thing, it underlined the lack of an ideological agenda on
Torvalds’ part. Unlike the GNU developers, Torvalds hadn’t
built an operating system out of a desire to give his fellow
hackers something to work with; he’d built it to have
something he himself could play with. Like Tom Sawyer
whitewashing a fence, Torvalds’ genius lay less in the overall
vision and more in his ability to recruit other hackers to speed
the process.

That Torvalds and his recruits had succeeded where others
had not raised its own troubling question: what, exactly, was
Linux? Was it a manifestation of the free software philosophy
first articulated by Stallman in the GNU Manifesto? Or was it

simply an amalgamation of nifty software tools that any user,
similarly motivated, could assemble on his own home system?

By late 1993, a growing number of Linux users had begun
to lean toward the latter definition and began brewing private
variations on the Linux theme. They even became bold enough
to bottle and sell their variations-or “distributions”-to fellow
Unix aficionados. The results were spotty at best.

“This was back before Red Hat and the other commercial
distributions,” remembers Ian Murdock, then a computer
science student at Purdue University. “You’d flip through Unix
magazines and find all these business card-sized ads
proclaiming `Linux.’ Most of the companies were fly-by-night
operations that saw nothing wrong with slipping a little of
their own source code into the mix.”

Murdock, a Unix programmer, remembers being “swept
away” by Linux when he first downloaded and installed it on
his home PC system. “It was just a lot of fun,” he says. “It
made me want to get involved.” The explosion of poorly built
distributions began to dampen his early enthusiasm, however.
Deciding that the best way to get involved was to build a
version of Linux free of additives, Murdock set about putting a
list of the best free software tools available with the intention
of folding them into his own distribution. “I wanted something
that would live up to the Linux name,” Murdock says.

In a bid to “stir up some interest,” Murdock posted his
intentions on the Internet, including Usenet’s comp.os.linux
newsgroup. One of the first responding email messages was
from rms@ai.mit.edu . As a hacker, Murdock instantly
recognized the address. It was Richard M. Stallman, founder
of the GNU Project and a man Murdock knew even back then
as “the hacker of hackers.” Seeing the address in his mail

queue, Murdock was puzzled. Why on Earth would Stallman,
a person leading his own operating-system project, care about
Murdock’s gripes over Linux?

Murdock opened the message.

“He said the Free Software Foundation was starting to look
closely at Linux and that the FSF was interested in possibly
doing a Linux system, too. Basically, it looked to Stallman like
our goals were in line with their philosophy.”

The message represented a dramatic about-face on
Stallman’s part. Until 1993, Stallman had been content to keep
his nose out of the Linux community’s affairs. In fact, he had
all but shunned the renegade operating system when it first
appeared on the Unix programming landscape in 1991. After
receiving the first notification of a Unix-like operating system
that ran on PCs, Stallman says he delegated the task of
examining the new operating system to a friend. Recalls
Stallman, “He reported back that the software was modeled
after System V, which was the inferior version of Unix. He
also told me it wasn’t portable.”

The friend’s report was correct. Built to run on 386-based
machines, Linux was firmly rooted to its low-cost hardware
platform. What the friend failed to report, however, was the
sizable advantage Linux enjoyed as the only freely modifiable
operating system in the marketplace. In other words, while
Stallman spent the next three years listening to bug reports
from his HURD team, Torvalds was winning over the
programmers who would later uproot and replant the operating
system onto new platforms.

By 1993, the GNU Project’s inability to deliver a working
kernel was leading to problems both within the GNU Project
and within the free software movement at large. A March,

1993, a Wired magazine article by Simson Garfinkel described
the GNU Project as “bogged down” despite the success of the
project’s many tools.See Simson Garfinkel, “Is Stallman
Stalled?” Wired (March, 1993). Those within the project and
its nonprofit adjunct, the Free Software Foundation, remember
the mood as being even worse than Garfinkel’s article let on.
“It was very clear, at least to me at the time, that there was a
window of opportunity to introduce a new operating system,”
says Chassell. “And once that window was closed, people
would become less interested. Which is in fact exactly what
happened.“Chassel’s concern about there being a 36-month
“window” for a new operating system is not unique to the
GNU Project. During the early 1990s, free software versions
of the Berkeley Software Distribution were held up by Unix
System Laboratories’ lawsuit restricting the release of BSD-
derived software. While many users consider BSD offshoots
such as FreeBSD and OpenBSD to be demonstrably superior
to GNU/Linux both in terms of performance and security, the
number of FreeBSD and OpenBSD users remains a fraction of
the total GNU/Linux user population. To view a sample
analysis of the relative success of GNU/Linux in relation to
other free software operating systems, see the essay by New
Zealand hacker, Liam Greenwood, “Why is Linux Successful”
(1999).

Much has been made about the GNU Project’s struggles
during the 1990-1993 period. While some place the blame on
Stallman for those struggles, Eric Raymond, an early member
of the GNU Emacs team and later Stallman critic, says the
problem was largely institutional. “The FSF got arrogant,”
Raymond says. “They moved away from the goal of doing a
production-ready operating system to doing operating-system

research.” Even worse, “They thought nothing outside the FSF
could affect them.”

Murdock, a person less privy to the inner dealings of the
GNU Project, adopts a more charitable view. “I think part of
the problem is they were a little too ambitious and they threw
good money after bad,” he says. “Micro-kernels in the late 80s
and early 90s were a hot topic. Unfortunately, that was about
the time that the GNU Project started to design their kernel.
They ended up with alot of baggage and it would have taken a
lot of backpedaling to lose it.”

Stallman cites a number of issues when explaining the
delay. The Lotus and Apple lawsuits had provided political
distractions, which, coupled with Stallman’s inability to type,
made it difficult for Stallman to lend a helping hand to the
HURD team. Stallman also cites poor communication between
various portions of the GNU Project. “We had to do a lot of
work to get the debugging environment to work,” he recalls.
“And the people maintaining GDB at the time were not that
cooperative.” Mostly, however, Stallman says he and the other
members of the GNU Project team underestimated the
difficulty of expanding the Mach microkernal into a full-
fledged Unix kernel.

“I figured, OK, the [Mach] part that has to talk to the
machine has already been debugged,” Stallman says, recalling
the HURD team’s troubles in a 2000 speech. “With that head
start, we should be able to get it done faster. But instead, it
turned out that debugging these asynchronous multithreaded
programs was really hard. There were timing books that would
clobber the files, and that’s no fun. The end result was that it
took many, many years to produce a test version.“See Maui
High Performance Computing Center Speech.

Whatever the excuse, or excuses, the concurrent success of
the Linux-kernel team created a tense situation. Sure, the
Linux kernel had been licensed under the GPL, but as
Murdock himself had noted, the desire to treat Linux as a
purely free software operating system was far from uniform.
By late 1993, the total Linux user population had grown from
a dozen or so Minix enthusiasts to somewhere between 20,000
and 100,000.GNU/Linux user-population numbers are sketchy
at best, which is why I’ve provided such a broad range. The
100,000 total comes from the Red Hat “Milestones” site,
http://www.redhat.com/about/corporate/milestones.html. What
had once been a hobby was now a marketplace ripe for
exploitation. Like Winston Churchill watching Soviet troops
sweep into Berlin, Stallman felt an understandable set of
mixed emotions when it came time to celebrate the Linux
“victory.“I wrote this Winston Churchill analogy before
Stallman himself sent me his own unsolicited comment on
Churchill: World War II and the determination needed to win it
was a very strong memory as I was growing up. Statements
such as Churchill’s, “We will fight them in the landing zones,
we will fight them on the beaches . . . we will never
surrender,” have always resonated for me.

Although late to the party, Stallman still had clout. As soon
as the FSF announced that it would lend its money and moral
support to Murdock’s software project, other offers of support
began rolling in. Murdock dubbed the new project Debian-a
compression of his and his wife, Deborah’s, names-and within
a few weeks was rolling out the first distribution. “[Richard’s
support] catapulted Debian almost overnight from this
interesting little project to something people within the
community had to pay attention to,” Murdock says.

In January of 1994, Murdock issued the ” Debian
Manifesto.” Written in the spirit of Stallman’s “GNU
Manifesto” from a decade before, it explained the importance
of working closely with the Free Software Foundation.
Murdock wrote: The Free Software Foundation plays an
extremely important role in the future of Debian. By the
simple fact that they will be distributing it, a message is sent to
the world that Linux is not a commercial product and that it
never should be, but that this does not mean that Linux will
never be able to compete commercially. For those of you who
disagree, I challenge you to rationalize the success of GNU
Emacs and GCC, which are not commercial software but
which have had quite an impact on the commercial market
regardless of that fact.

The time has come to concentrate on the future of Linux
rather than on the destructive goal of enriching oneself at the
expense of the entire Linux community and its future. The
development and distribution of Debian may not be the answer
to the problems that I have outlined in the Manifesto, but I
hope that it will at least attract enough attention to these
problems to allow them to be solved. Shortly after the
Manifesto’s release, the Free Software Foundation made its
first major request. Stallman wanted Murdock to call its
distribution “GNU/Linux.” At first, Murdock says, Stallman
had wanted to use the term ” Lignux”-“as in Linux with GNU
at the heart of it”-but a sample testing of the term on Usenet
and in various impromptu hacker focus groups had merited
enough catcalls to convince Stallman to go with the less
awkward GNU/Linux.

Although some would dismiss Stallman’s attempt to add the
“GNU” prefix as a belated quest for credit, Murdock saw it
differently. Looking back, Murdock saw it as an attempt to

counteract the growing tension between GNU Project and
Linux-kernel developers. “There was a split emerging,”
Murdock recalls. “Richard was concerned.”

The deepest split, Murdock says, was over glibc. Short for
GNU C Library, glibc is the package that lets programmers
make “system calls” directed at the kernel. Over the course of
1993-1994, glibc emerged as a troublesome bottleneck in
Linux development. Because so many new users were adding
new functions to the Linux kernel, the GNU Project’s glibc
maintainers were soon overwhelmed with suggested changes.
Frustrated by delays and the GNU Project’s growing
reputation for foot-dragging, some Linux developers suggested
creating a ” fork”-i.e., a Linux-specific C Library parallel to
glibc.

In the hacker world, forks are an interesting phenomenon.
Although the hacker ethic permits a programmer to do
anything he wants with a given program’s source code, most
hackers prefer to pour their innovations into a central source-
code file or ” tree” to ensure compatibility with other people’s
programs. To fork glibc this early in the development of Linux
would have meant losing the potential input of hundreds, even
thousands, of Linux developers. It would also mean growing
incompatibility between Linux and the GNU system that
Stallman and the GNU team still hoped to develop.

As leader of the GNU Project, Stallman had already
experienced the negative effects of a software fork in 1991. A
group of Emacs developers working for a software company
named Lucid had a falling out over Stallman’s unwillingness
to fold changes back into the GNU Emacs code base. The fork
had given birth to a parallel version, Lucid Emacs, and hard
feelings all around.Jamie Zawinski, a former Lucid
programmer who would go on to head the Mozilla

development team, has a web site that documents the
Lucid/GNU Emacs fork, titled, “The Lemacs/FSFmacs
Schism.” http://www.jwz.org/doc/lemacs.html

Murdock says Debian was mounting work on a similar fork
in glibc source code that motivated Stallman to insist on
adding the GNU prefix when Debian rolled out its software
distribution. “The fork has since converged. Still, at the time,
there was a concern that if the Linux community saw itself as
a different thing as the GNU community, it might be a force
for disunity.”

Stallman seconds Murdock’s recollection. In fact, he says
there were nascent forks appearing in relation to every major
GNU component. At first, Stallman says he considered the
forks to be a product of sour grapes. In contrast to the fast and
informal dynamics of the Linux-kernel team, GNU source-
code maintainers tended to be slower and more circumspect in
making changes that might affect a program’s long-term
viability. They also were unafraid of harshly critiquing other
people’s code. Over time, however, Stallman began to sense
that there was an underlying lack of awareness of the GNU
Project and its objectives when reading Linux developers’
emails.

“We discovered that the people who considered themselves
Linux users didn’t care about the GNU Project,” Stallman
says. “They said, `Why should I bother doing these things? I
don’t care about the GNU Project. It’s working for me. It’s
working for us Linux users, and nothing else matters to us.’
And that was quite surprising given that people were
essentially using a variant of the GNU system, and they cared
so little. They cared less than anybody else about GNU.”

While some viewed descriptions of Linux as a “variant” of
the GNU Project as politically grasping, Murdock, already
sympathetic to the free software cause, saw Stallman’s request
to call Debian’s version GNU/Linux as reasonable. “It was
more for unity than for credit,” he says.

Requests of a more technical nature quickly followed.
Although Murdock had been accommodating on political
issues, he struck a firmer pose when it came to the design and
development model of the actual software. What had begun as
a show of solidarity soon became of model of other GNU
projects.

“I can tell you that I’ve had my share of disagreements with
him,” says Murdock with a laugh. “In all honesty Richard can
be a fairly difficult person to work with.”

In 1996, Murdock, following his graduation from Purdue,
decided to hand over the reins of the growing Debian project.
He had already been ceding management duties to Bruce
Perens, the hacker best known for his work on Electric Fence,
a Unix utility released under the GPL. Perens, like Murdock,
was a Unix programmer who had become enamored of
GNU/Linux as soon as the program’s Unix-like abilities
became manifest. Like Murdock, Perens sympathized with the
political agenda of Stallman and the Free Software
Foundation, albeit from afar.

“I remember after Stallman had already come out with the
GNU Manifesto, GNU Emacs, and GCC, I read an article that
said he was working as a consultant for Intel,” says Perens,
recalling his first brush with Stallman in the late 1980s. “I
wrote him asking how he could be advocating free software on
the one hand and working for Intel on the other. He wrote back
saying, `I work as a consultant to produce free software.’ He

was perfectly polite about it, and I thought his answer made
perfect sense.”

As a prominent Debian developer, however, Perens
regarded Murdock’s design battles with Stallman with dismay.
Upon assuming leadership of the development team, Perens
says he made the command decision to distance Debian from
the Free Software Foundation. “I decided we did not want
Richard’s style of micro-management,” he says.

According to Perens, Stallman was taken aback by the
decision but had the wisdom to roll with it. “He gave it some
time to cool off and sent a message that we really needed a
relationship. He requested that we call it GNU/Linux and left
it at that. I decided that was fine. I made the decision
unilaterally. Everybody breathed a sigh of relief.”

Over time, Debian would develop a reputation as the
hacker’s version of Linux, alongside Slackware, another
popular distribution founded during the same 1993-1994
period. Outside the realm of hacker-oriented systems,
however, Linux was picking up steam in the commercial Unix
marketplace. In North Carolina, a Unix company billing itself
as Red Hat was revamping its business to focus on Linux. The
chief executive officer was Robert Young, the former Linux
Journal editor who in 1994 had put the question to Linus
Torvalds, asking whether he had any regrets about putting the
kernel under the GPL. To Young, Torvalds’ response had a
“profound” impact on his own view toward Linux. Instead of
looking for a way to corner the GNU/Linux market via
traditional software tactics, Young began to consider what
might happen if a company adopted the same approach as
Debian-i.e., building an operating system completely out of
free software parts. Cygnus Solutions, the company founded
by Michael Tiemann and John Gilmore in 1990, was already

demonstrating the ability to sell free software based on quality
and customizability. What if Red Hat took the same approach
with GNU/Linux?

“In the western scientific tradition we stand on the shoulders
of giants,” says Young, echoing both Torvalds and Sir Isaac
Newton before him. “In business, this translates to not having
to reinvent wheels as we go along. The beauty of [the GPL]
model is you put your code into the public domain.Young uses
the term “public domain” incorrectly here. Public domain
means not protected by copyright. GPL-protected programs
are by definition protected by copyright. If you’re an
independent software vendor and you’re trying to build some
application and you need a modem-dialer, well, why reinvent
modem dialers? You can just steal PPP off of Red Hat Linux
and use that as the core of your modem-dialing tool. If you
need a graphic tool set, you don’t have to write your own
graphic library. Just download GTK. Suddenly you have the
ability to reuse the best of what went before. And suddenly
your focus as an application vendor is less on software
management and more on writing the applications specific to
your customer’s needs.”

Young wasn’t the only software executive intrigued by the
business efficiencies of free software. By late 1996, most Unix
companies were starting to wake up and smell the brewing
source code. The Linux sector was still a good year or two
away from full commercial breakout mode, but those close
enough to the hacker community could feel it: something big
was happening. The Intel 386 chip, the Internet, and the World
Wide Web had hit the marketplace like a set of monster waves,
and Linux-and the host of software programs that echoed it in
terms of source-code accessibility and permissive licensing-
seemed like the largest wave yet.

For Ian Murdock, the programmer courted by Stallman and
then later turned off by Stallman’s micromanagement style, the
wave seemed both a fitting tribute and a fitting punishment for
the man who had spent so much time giving the free software
movement an identity. Like many Linux aficionados, Murdock
had seen the original postings. He’d seen Torvalds’s original
admonition that Linux was “just a hobby.” He’d also seen
Torvalds’s admission to Minix creator Andrew Tanenbaum: “If
the GNU kernel had been ready last spring, I’d not have
bothered to even start my project.“This quote is taken from the
much-publicized Torvalds-Tanenbaum “flame war” following
the initial release of Linux. In the process of defending his
choice of a nonportable monolithic kernel design, Torvalds
says he started working on Linux as a way to learn more about
his new 386 PC. “If the GNU kernel had been ready last
spring, I’d not have bothered to even start my project.” See
Chris DiBona et al., Open Sources (O’Reilly & Associates,
Inc., 1999): 224. Like many, Murdock knew the opportunities
that had been squandered. He also knew the excitement of
watching new opportunities come seeping out of the very
fabric of the Internet.

“Being involved with Linux in those early days was fun,”
recalls Murdock. “At the same time, it was something to do,
something to pass the time. If you go back and read those old
[comp.os.minix] exchanges, you’ll see the sentiment: this is
something we can play with until the HURD is ready. People
were anxious. It’s funny, but in a lot of ways, I suspect that
Linux would never have happened if the HURD had come
along more quickly.”

By the end of 1996, however, such “what if” questions were
already moot. Call it Linux, call it GNU/Linux; the users had
spoken. The 36-month window had closed, meaning that even

if the GNU Project had rolled out its HURD kernel, chances
were slim anybody outside the hard-core hacker community
would have noticed. The first Unix-like free software
operating system was here, and it had momentum. All hackers
had left to do was sit back and wait for the next major wave to
come crashing down on their heads. Even the shaggy-haired
head of one Richard M. Stallman.

Ready or not.

Open Source

In November , 1995, Peter Salus, a member of the Free
Software Foundation and author of the 1994 book, A Quarter
Century of Unix , issued a call for papers to members of the
GNU Project’s “system-discuss” mailing list. Salus, the
conference’s scheduled chairman, wanted to tip off fellow
hackers about the upcoming Conference on Freely
Redistributable Software in Cambridge, Massachusetts. Slated
for February, 1996 and sponsored by the Free Software
Foundation, the event promised to be the first engineering
conference solely dedicated to free software and, in a show of
unity with other free software programmers, welcomed papers
on “any aspect of GNU, Linux, NetBSD, 386BSD, FreeBSD,
Perl, Tcl/tk, and other tools for which the code is accessible
and redistributable.” Salus wrote: Over the past 15 years, free
and low-cost software has become ubiquitous. This conference
will bring together implementers of several different types of
freely redistributable software and publishers of such software
(on various media). There will be tutorials and refereed papers,
as well as keynotes by Linus Torvalds and Richard
Stallman.See Peter Salus, “FYI-Conference on Freely
Redistributable Software, 2/2, Cambridge” (1995) (archived
by Terry Winograd).

http://hci.stanford.edu/pcd-archives/pcd-fyi/1995/0078.html
 One of the first people to receive Salus’ email was
conference committee member Eric S. Raymond. Although
not the leader of a project or company like the various
other members of the list, Raymond had built a tidy
reputation within the hacker community as a major
contributor to GNU Emacs and as editor of The New
Hacker Dictionary, a book version of the hacking
community’s decade-old Jargon File.

For Raymond, the 1996 conference was a welcome event.
Active in the GNU Project during the 1980s, Raymond had
distanced himself from the project in 1992, citing, like many
others before him, Stallman’s “micro-management” style.
“Richard kicked up a fuss about my making unauthorized
modifications when I was cleaning up the Emacs LISP
libraries,” Raymond recalls. “It frustrated me so much that I
decided I didn’t want to work with him anymore.”

Despite the falling out, Raymond remained active in the free
software community. So much so that when Salus suggested a
conference pairing Stallman and Torvalds as keynote speakers,
Raymond eagerly seconded the idea. With Stallman
representing the older, wiser contingent of ITS/Unix hackers
and Torvalds representing the younger, more energetic crop of
Linux hackers, the pairing indicated a symbolic show of unity
that could only be beneficial, especially to ambitious younger
(i.e., below 40) hackers such as Raymond. “I sort of had a foot
in both camps,” Raymond says.

By the time of the conference, the tension between those
two camps had become palpable. Both groups had one thing in
common, though: the conference was their first chance to meet
the Finnish wunderkind in the flesh. Surprisingly, Torvalds
proved himself to be a charming, affable speaker. Possessing

only a slight Swedish accent, Torvalds surprised audience
members with his quick, self-effacing wit.Although Linus
Torvalds is Finnish, his mother tongue is Swedish. “The
Rampantly Unofficial Linus FAQ” offers a brief explanation:
Finland has a significant (about 6%) Swedish-speaking
minority population. They call themselves “finlandssvensk” or
“finlandssvenskar” and consider themselves Finns; many of
their families have lived in Finland for centuries. Swedish is
one of Finland’s two official languages.
http://tuxedo.org/~esr/faqs/linus/ Even more surprising, says
Raymond, was Torvalds’ equal willingness to take potshots at
other prominent hackers, including the most prominent hacker
of all, Richard Stallman. By the end of the conference,
Torvalds’ half-hacker, half-slacker manner was winning over
older and younger conference-goers alike.

“It was a pivotal moment,” recalls Raymond. “Before 1996,
Richard was the only credible claimant to being the
ideological leader of the entire culture. People who dissented
didn’t do so in public. The person who broke that taboo was
Torvalds.”

The ultimate breach of taboo would come near the end of
the show. During a discussion on the growing market
dominance of Microsoft Windows or some similar topic,
Torvalds admitted to being a fan of Microsoft’s PowerPoint
slideshow software program. From the perspective of old-line
software purists, it was like a Mormon bragging in church
about his fondness of whiskey. From the perspective of
Torvalds and his growing band of followers, it was simply
common sense. Why shun worthy proprietary software
programs just to make a point? Being a hacker wasn’t about
suffering, it was about getting the job done.

“That was a pretty shocking thing to say,” Raymond
remembers. “Then again, he was able to do that, because by
1995 and 1996, he was rapidly acquiring clout.”

Stallman, for his part, doesn’t remember any tension at the
1996 conference, but he does remember later feeling the sting
of Torvalds’ celebrated cheekiness. “There was a thing in the
Linux documentation which says print out the GNU coding
standards and then tear them up,” says Stallman, recalling one
example. “OK, so he disagrees with some of our conventions.
That’s fine, but he picked a singularly nasty way of saying so.
He could have just said `Here’s the way I think you should
indent your code.’ Fine. There should be no hostility there.”

For Raymond, the warm reception other hackers gave to
Torvalds’ comments merely confirmed his suspicions. The
dividing line separating Linux developers from GNU/Linux
developers was largely generational. Many Linux hackers, like
Torvalds, had grown up in a world of proprietary software.
Unless a program was clearly inferior, most saw little reason
to rail against a program on licensing issues alone. Somewhere
in the universe of free software systems lurked a program that
hackers might someday turn into a free software alternative to
PowerPoint. Until then, why begrudge Microsoft the initiative
of developing the program and reserving the rights to it?

As a former GNU Project member, Raymond sensed an
added dynamic to the tension between Stallman and Torvalds.
In the decade since launching the GNU Project, Stallman had
built up a fearsome reputation as a programmer. He had also
built up a reputation for intransigence both in terms of
software design and people management. Shortly before the
1996 conference, the Free Software Foundation would
experience a full-scale staff defection, blamed in large part on
Stallman. Brian Youmans, a current FSF staffer hired by Salus

in the wake of the resignations, recalls the scene: “At one
point, Peter [Salus] was the only staff member working in the
office.”

For Raymond, the defection merely confirmed a growing
suspicion: recent delays such as the HURD and recent troubles
such as the Lucid-Emacs schism reflected problems normally
associated with software project management, not software
code development. Shortly after the Freely Redistributable
Software Conference, Raymond began working on his own pet
software project, a popmail utility called ” fetchmail.” Taking
a cue from Torvalds, Raymond issued his program with a
tacked-on promise to update the source code as early and as
often as possible. When users began sending in bug reports
and feature suggestions, Raymond, at first anticipating a
tangled mess, found the resulting software surprisingly sturdy.
Analyzing the success of the Torvalds approach, Raymond
issued a quick analysis: using the Internet as his “petri dish”
and the harsh scrutiny of the hacker community as a form of
natural selection, Torvalds had created an evolutionary model
free of central planning.

What’s more, Raymond decided, Torvalds had found a way
around Brooks’ Law. First articulated by Fred P. Brooks,
manager of IBM’s OS/360 project and author of the 1975
book, The Mythical Man-Month , Brooks’ Law held that
adding developers to a project only resulted in further project
delays. Believing as most hackers that software, like soup,
benefits from a limited number of cooks, Raymond sensed
something revolutionary at work. In inviting more and more
cooks into the kitchen, Torvalds had actually found away to
make the resulting software better.Brooks’ Law is the
shorthand summary of the following quote taken from Brooks’
book: Since software construction is inherently a systems

effort-an exercise in complex interrelationships-
communication effort is great, and it quickly dominates the
decrease in individual task time brought about by partitioning.
Adding more men then lengthens, not shortens, the schedule.
See Fred P. Brooks, The Mythical Man-Month (Addison
Wesley Publishing, 1995)

Raymond put his observations on paper. He crafted them
into a speech, which he promptly delivered before a group of
friends and neighbors in Chester County, Pennsylvania.
Dubbed ” The Cathedral and the Bazaar,” the speech
contrasted the management styles of the GNU Project with the
management style of Torvalds and the kernel hackers.
Raymond says the response was enthusiastic, but not nearly as
enthusiastic as the one he received during the 1997 Linux
Kongress, a gathering of Linux users in Germany the next
spring.

“At the Kongress, they gave me a standing ovation at the
end of the speech,” Raymond recalls. “I took that as
significant for two reasons. For one thing, it meant they were
excited by what they were hearing. For another thing, it meant
they were excited even after hearing the speech delivered
through a language barrier.”

Eventually, Raymond would convert the speech into a
paper, also titled “The Cathedral and the Bazaar.” The paper
drew its name from Raymond’s central analogy. GNU
programs were “cathedrals,” impressive, centrally planned
monuments to the hacker ethic, built to stand the test of time.
Linux, on the other hand, was more like “a great babbling
bazaar,” a software program developed through the loose
decentralizing dynamics of the Internet.

Implicit within each analogy was a comparison of Stallman
and Torvalds. Where Stallman served as the classic model of
the cathedral architect-i.e., a programming “wizard” who
could disappear for 18 months and return with something like
the GNU C Compiler-Torvalds was more like a genial dinner-
party host. In letting others lead the Linux design discussion
and stepping in only when the entire table needed a referee,
Torvalds had created a development model very much
reflective of his own laid-back personality. From the Torvalds’
perspective, the most important managerial task was not
imposing control but keeping the ideas flowing.

Summarized Raymond, “I think Linus’s cleverest and most
consequential hack was not the construction of the Linux
kernel itself, but rather his invention of the Linux development
model.“See Eric Raymond, “The Cathredral and the Bazaar”
(1997).

In summarizing the secrets of Torvalds’ managerial success,
Raymond himself had pulled off a coup. One of the audience
members at the Linux Kongress was Tim O’Reilly, publisher
of O’Reilly & Associates, a company specializing in software
manuals and software-related books (and the publisher of this
book). After hearing Raymond’s Kongress speech, O’Reilly
promptly invited Raymond to deliver it again at the company’s
inaugural Perl Conference later that year in Monterey,
California.

Although the conference was supposed to focus on Perl, a
scripting language created by Unix hacker Larry Wall,
O’Reilly assured Raymond that the conference would address
other free software technologies. Given the growing
commercial interest in Linux and Apache, a popular free
software web server, O’Reilly hoped to use the event to
publicize the role of free software in creating the entire

infrastructure of the Internet. From web-friendly languages
such as Perl and Python to back-room programs such as BIND
(the Berkeley Internet Naming Daemon), a software tool that
lets users replace arcane IP numbers with the easy-to-
remember domain-name addresses (e.g., amazon.com), and
sendmail, the most popular mail program on the Internet, free
software had become an emergent phenomenon. Like a colony
of ants creating a beautiful nest one grain of sand at a time, the
only thing missing was the communal self-awareness.
O’Reilly saw Raymond’s speech as a good way to inspire that
self-awareness, to drive home the point that free software
development didn’t start and end with the GNU Project.
Programming languages, such as Perl and Python, and Internet
software, such as BIND, sendmail, and Apache, demonstrated
that free software was already ubiquitous and influential. He
also assured Raymond an even warmer reception than the one
at Linux Kongress.

O’Reilly was right. “This time, I got the standing ovation
before the speech,” says Raymond, laughing.

As predicted, the audience was stocked not only with
hackers, but with other people interested in the growing power
of the free software movement. One contingent included a
group from Netscape, the Mountain View, California startup
then nearing the end game of its three-year battle with
Microsoft for control of the web-browser market.

Intrigued by Raymond’s speech and anxious to win back
lost market share, Netscape executives took the message back
to corporate headquarters. A few months later, in January,
1998, the company announced its plan to publish the source
code of its flagship Navigator web browser in the hopes of
enlisting hacker support in future development.

When Netscape CEO Jim Barksdale cited Raymond’s
“Cathedral and the Bazaar” essay as a major influence upon
the company’s decision, the company instantly elevated
Raymond to the level of hacker celebrity. Determined not to
squander the opportunity, Raymond traveled west to deliver
interviews, advise Netscape executives, and take part in the
eventual party celebrating the publication of Netscape
Navigator’s source code. The code name for Navigator’s
source code was “Mozilla”: a reference both to the program’s
gargantuan size-30 million lines of code-and to its heritage.
Developed as a proprietary offshoot of Mosaic, the web
browser created by Marc Andreessen at the University of
Illinois, Mozilla was proof, yet again, that when it came to
building new programs, most programmers preferred to
borrow on older, modifiable programs.

While in California, Raymond also managed to squeeze in a
visit to VA Research, a Santa Clara-based company selling
workstations with the GNU/Linux operating system
preinstalled. Convened by Raymond, the meeting was small.
The invite list included VA founder Larry Augustin, a few VA
employees, and Christine Peterson, president of the Foresight
Institute, a Silicon Valley think tank specializing in
nanotechnology.

“The meeting’s agenda boiled down to one item: how to
take advantage of Netscape’s decision so that other companies
might follow suit?” Raymond doesn’t recall the conversation
that took place, but he does remember the first complaint
addressed. Despite the best efforts of Stallman and other
hackers to remind people that the word “free” in free software
stood for freedom and not price, the message still wasn’t
getting through. Most business executives, upon hearing the
term for the first time, interpreted the word as synonymous

with “zero cost,” tuning out any follow up messages in short
order. Until hackers found a way to get past this cognitive
dissonance, the free software movement faced an uphill climb,
even after Netscape.

Peterson, whose organization had taken an active interest in
advancing the free software cause, offered an alternative: open
source.

Looking back, Peterson says she came up with the open
source term while discussing Netscape’s decision with a friend
in the public relations industry. She doesn’t remember where
she came upon the term or if she borrowed it from another
field, but she does remember her friend disliking the term.5

At the meeting, Peterson says, the response was
dramatically different. “I was hesitant about suggesting it,”
Peterson recalls. “I had no standing with the group, so started
using it casually, not highlighting it as a new term.” To
Peterson’s surprise, the term caught on. By the end of the
meeting, most of the attendees, including Raymond, seemed
pleased by it.

Raymond says he didn’t publicly use the term “open
source” as a substitute for free software until a day or two after
the Mozilla launch party, when O’Reilly had scheduled a
meeting to talk about free software. Calling his meeting “the
Freeware Summit,” O’Reilly says he wanted to direct media
and community attention to the other deserving projects that
had also encouraged Netscape to release Mozilla. “All these
guys had so much in common, and I was surprised they didn’t
all know each other,” says O’Reilly. “I also wanted to let the
world know just how great an impact the free software culture
had already made. People were missing out on a large part of
the free software tradition.”

In putting together the invite list, however, O’Reilly made a
decision that would have long-term political consequences. He
decided to limit the list to west-coast developers such as Wall,
Eric Allman, creator of sendmail, and Paul Vixie, creator of
BIND. There were exceptions, of course: Pennsylvania-
resident Raymond, who was already in town thanks to the
Mozilla launch, earned a quick invite. So did Virginia-resident
Guido van Rossum, creator of Python. “Frank Willison, my
editor in chief and champion of Python within the company,
invited him without first checking in with me,” O’Reilly
recalls. “I was happy to have him there, but when I started, it
really was just a local gathering.”

For some observers, the unwillingness to include Stallman’s
name on the list qualified as a snub. “I decided not to go to the
event because of it,” says Perens, remembering the summit.
Raymond, who did go, says he argued for Stallman’s inclusion
to no avail. The snub rumor gained additional strength from
the fact that O’Reilly, the event’s host, had feuded publicly
with Stallman over the issue of software-manual copyrights.
Prior to the meeting, Stallman had argued that free software
manuals should be as freely copyable and modifiable as free
software programs. O’Reilly, meanwhile, argued that a value-
added market for nonfree books increased the utility of free
software by making it more accessible to a wider community.
The two had also disputed the title of the event, with Stallman
insisting on “Free Software” over the less politically laden
“Freeware.”

Looking back, O’Reilly doesn’t see the decision to leave
Stallman’s name off the invite list as a snub. “At that time, I
had never met Richard in person, but in our email interactions,
he’d been inflexible and unwilling to engage in dialogue. I
wanted to make sure the GNU tradition was represented at the

meeting, so I invited John Gilmore and Michael Tiemann,
whom I knew personally, and whom I knew were passionate
about the value of the GPL but seemed more willing to engage
in a frank back-and-forth about the strengths and weaknesses
of the various free software projects and traditions. Given all
the later brouhaha, I do wish I’d invited Richard as well, but I
certainly don’t think that my failure to do so should be
interpreted as a lack of respect for the GNU Project or for
Richard personally.”

Snub or no snub, both O’Reilly and Raymond say the term
“open source” won over just enough summit-goers to qualify
as a success. The attendees shared ideas and experiences and
brainstormed on how to improve free software’s image. Of key
concern was how to point out the successes of free software,
particularly in the realm of Internet infrastructure, as opposed
to playing up the GNU/Linux challenge to Microsoft
Windows. But like the earlier meeting at VA, the discussion
soon turned to the problems associated with the term “free
software.” O’Reilly, the summit host, remembers a particularly
insightful comment from Torvalds, a summit attendee.

“Linus had just moved to Silicon Valley at that point, and he
explained how only recently that he had learned that the word
`free’ had two meanings-free as in `libre’ and free as in
`gratis’-in English.”

Michael Tiemann, founder of Cygnus, proposed an
alternative to the troublesome “free software” term:
sourceware. “Nobody got too excited about it,” O’Reilly
recalls. “That’s when Eric threw out the term `open source.’”

Although the term appealed to some, support for a change in
official terminology was far from unanimous. At the end of the
one-day conference, attendees put the three terms-free

software, open source, or sourceware-to a vote. According to
O’Reilly, 9 out of the 15 attendees voted for “open source.”
Although some still quibbled with the term, all attendees
agreed to use it in future discussions with the press. “We
wanted to go out with a solidarity message,” O’Reilly says.

The term didn’t take long to enter the national lexicon.
Shortly after the summit, O’Reilly shepherded summit
attendees to a press conference attended by reporters from the
New York Times, the Wall Street Journal, and other prominent
publications. Within a few months, Torvalds’ face was
appearing on the cover of Forbes magazine, with the faces of
Stallman, Perl creator Larry Wall, and Apache team leader
Brian Behlendorf featured in the interior spread. Open source
was open for business.

For summit attendees such as Tiemann, the solidarity
message was the most important thing. Although his company
had achieved a fair amount of success selling free software
tools and services, he sensed the difficulty other programmers
and entrepreneurs faced.

“There’s no question that the use of the word free was
confusing in a lot of situations,” Tiemann says. “Open source
positioned itself as being business friendly and business
sensible. Free software positioned itself as morally righteous.
For better or worse we figured it was more advantageous to
align with the open source crowd.

For Stallman, the response to the new “open source” term
was slow in coming. Raymond says Stallman briefly
considered adopting the term, only to discard it. “I know
because I had direct personal conversations about it,”
Raymond says.

By the end of 1998, Stallman had formulated a position:
open source, while helpful in communicating the technical
advantages of free software, also encouraged speakers to soft-
pedal the issue of software freedom. Given this drawback,
Stallman would stick with the term free software.

Summing up his position at the 1999 LinuxWorld
Convention and Expo, an event billed by Torvalds himself as a
“coming out party” for the Linux community, Stallman
implored his fellow hackers to resist the lure of easy
compromise.

“Because we’ve shown how much we can do, we don’t have
to be desperate to work with companies or compromise our
goals,” Stallman said during a panel discussion. “Let them
offer and we’ll accept. We don’t have to change what we’re
doing to get them to help us. You can take a single step
towards a goal, then another and then more and more and
you’ll actually reach your goal. Or, you can take a half
measure that means you don’t ever take another step and
you’ll never get there.”

Even before the LinuxWorld show, however, Stallman was
showing an increased willingness to alienate his more
conciliatory peers. A few months after the Freeware Summit,
O’Reilly hosted its second annual Perl Conference. This time
around, Stallman was in attendance. During a panel discussion
lauding IBM’s decision to employ the free software Apache
web server in its commercial offerings, Stallman, taking
advantage of an audience microphone, disrupted the
proceedings with a tirade against panelist John Ousterhout,
creator of the Tcl scripting language. Stallman branded
Ousterhout a “parasite” on the free software community for
marketing a proprietary version of Tcl via Ousterhout’s startup
company, Scriptics. “I don’t think Scriptics is necessary for the

continued existence of Tcl,” Stallman said to hisses from the
fellow audience members.See Malcolm Maclachlan, “Profit
Motive Splits Open Source Movement,” TechWeb News
(August 26, 1998).
http://content.techweb.com/wire/story/TWB19980824S0012

“It was a pretty ugly scene,” recalls Prime Time Freeware’s
Rich Morin. “John’s done some pretty respectable things: Tcl,
Tk, Sprite. He’s a real contributor.”

Despite his sympathies for Stallman and Stallman’s
position, Morin felt empathy for those troubled by Stallman’s
discordant behavior.

Stallman’s Perl Conference outburst would momentarily
chase off another potential sympathizer, Bruce Perens. In
1998, Eric Raymond proposed launching the Open Source
Initiative, or OSI, an organization that would police the use of
the term “open source” and provide a definition for companies
interested in making their own programs. Raymond recruited
Perens to draft the definition.See Bruce Perens et al., “The
Open Source Definition,” The Open Source Initiative (1998).
http://www.opensource.org/docs/definition.html

Perens would later resign from the OSI, expressing regret
that the organization had set itself up in opposition to Stallman
and the FSF. Still, looking back on the need for a free software
definition outside the Free Software Foundation’s auspices,
Perens understands why other hackers might still feel the need
for distance. “I really like and admire Richard,” says Perens. “I
do think Richard would do his job better if Richard had more
balance. That includes going away from free software for a
couple of months.”

Stallman’s monomaniacal energies would do little to
counteract the public-relations momentum of open source

proponents. In August of 1998, when chip-maker Intel
purchased a stake in GNU/Linux vendor Red Hat, an
accompanying New York Times article described the company
as the product of a movement “known alternatively as free
software and open source.“See Amy Harmon, “For Sale: Free
Operating System,” New York Times (September 28, 1998).

http://www.nytimes.com/library/tech/98/09/biztech/articles/
28linux.html
 Six months later, a John Markoff article on Apple
Computer was proclaiming the company’s adoption of the
“open source” Apache server in the article headline.See John
Markoff, “Apple
Adopts `Open Source’ for its
Server Computers,” New York Times (March 17, 1999).

http://www.nytimes.com/library/tech/99/03/biztech/articles/
17apple.html

Such momentum would coincide with the growing
momentum of companies that actively embraced the “open
source” term. By August of 1999, Red Hat, a company that
now eagerly billed itself as “open source,” was selling shares
on Nasdaq. In December, VA Linux-formerly VA Research-
was floating its own IPO to historical effect. Opening at $30
per share, the company’s stock price exploded past the $300
mark in initial trading only to settle back down to the $239
level. Shareholders lucky enough to get in at the bottom and
stay until the end experienced a 698% increase in paper
wealth, a Nasdaq record.

Among those lucky shareholders was Eric Raymond, who,
as a company board member since the Mozilla launch, had
received 150,000 shares of VA Linux stock. Stunned by the
realization that his essay contrasting the Stallman-Torvalds

managerial styles had netted him $36 million in potential
wealth, Raymond penned a follow-up essay. In it, Raymond
mused on the relationship between the hacker ethic and
monetary wealth: Reporters often ask me these days if I think
the open-source community will be corrupted by the influx of
big money. I tell them what I believe, which is this:
commercial demand for programmers has been so intense for
so long that anyone who can be seriously distracted by money
is already gone. Our community has been self-selected for
caring about other things-accomplishment, pride, artistic
passion, and each other.See Eric Raymond, “Surprised by
Wealth,” Linux Today (December 10, 1999).

http://linuxtoday.com/news_story.php3?ltsn=1999-12-10-
001-05-NW-LF
 Whether or not such comments allayed suspicions that
Raymond and other open source proponents had simply
been in it for the money, they drove home the open
source community’s ultimate message: all you needed to
sell the free software concept is a friendly face and a
sensible message. Instead of fighting the marketplace
head-on as Stallman had done, Raymond, Torvalds, and
other new leaders of the hacker community had adopted a
more relaxed approach-ignoring the marketplace in some
areas, leveraging it in others. Instead of playing the
role of high-school outcasts, they had played the game
of celebrity, magnifying their power in the process.

“On his worst days Richard believes that Linus Torvalds
and I conspired to hijack his revolution,” Raymond says.
“Richard’s rejection of the term open source and his deliberate
creation of an ideological fissure in my view comes from an
odd mix of idealism and territoriality. There are people out
there who think it’s all Richard’s personal ego. I don’t believe

that. It’s more that he so personally associates himself with the
free software idea that he sees any threat to that as a threat to
himself.”

Ironically, the success of open source and open source
advocates such as Raymond would not diminish Stallman’s
role as a leader. If anything, it gave Stallman new followers to
convert. Still, the Raymond territoriality charge is a damning
one. There are numerous instances of Stallman sticking to his
guns more out of habit than out of principle: his initial
dismissal of the Linux kernel, for example, and his current
unwillingness as a political figure to venture outside the realm
of software issues.

Then again, as the recent debate over open source also
shows, in instances when Stallman has stuck to his guns, he’s
usually found a way to gain ground because of it. “One of
Stallman’s primary character traits is the fact he doesn’t
budge,” says Ian Murdock. “He’ll wait up to a decade for
people to come around to his point of view if that’s what it
takes.”

Murdock, for one, finds that unbudgeable nature both
refreshing and valuable. Stallman may no longer be the
solitary leader of the free software movement, but he is still
the polestar of the free software community. “You always
know that he’s going to be consistent in his views,” Murdock
says. “Most people aren’t like that. Whether you agree with
him or not, you really have to respect that.”

A Brief Journey Through Hacker Hell

Richard Stallman stares, unblinking, through the windshield
of a rental car, waiting for the light to change as we make our
way through downtown Kihei.

The two of us are headed to the nearby town of Pa’ia, where
we are scheduled to meet up with some software programmers
and their wives for dinner in about an hour or so.

It’s about two hours after Stallman’s speech at the Maui
High Performance Center, and Kihei, a town that seemed so
inviting before the speech, now seems profoundly
uncooperative. Like most beach cities, Kihei is a one-
dimensional exercise in suburban sprawl. Driving down its
main drag, with its endless succession of burger stands, realty
agencies, and bikini shops, it’s hard not to feel like a steel-
coated morsel passing through the alimentary canal of a giant
commercial tapeworm. The feeling is exacerbated by the lack
of side roads. With nowhere to go but forward, traffic moves
in spring-like lurches. 200 yards ahead, a light turns green. By
the time we are moving, the light is yellow again.

For Stallman, a lifetime resident of the east coast, the
prospect of spending the better part of a sunny Hawaiian
afternoon trapped in slow traffic is enough to trigger an
embolism. Even worse is the knowledge that, with just a few
quick right turns a quarter mile back, this whole situation
easily could have been avoided. Unfortunately, we are at the
mercy of the driver ahead of us, a programmer from the lab
who knows the way and who has decided to take us to Pa’ia
via the scenic route instead of via the nearby Pilani Highway.

“This is terrible,” says Stallman between frustrated sighs.
“Why didn’t we take the other route?”

Again, the light a quarter mile ahead of us turns green.
Again, we creep forward a few more car lengths. This process
continues for another 10 minutes, until we finally reach a
major crossroad promising access to the adjacent highway.

The driver ahead of us ignores it and continues through the
intersection.

“Why isn’t he turning?” moans Stallman, throwing up his
hands in frustration. “Can you believe this?”

I decide not to answer either. I find the fact that I am sitting
in a car with Stallman in the driver seat, in Maui no less,
unbelievable enough. Until two hours ago, I didn’t even know
Stallman knew how to drive. Now, listening to Yo-Yo Ma’s
cello playing the mournful bass notes of “Appalachian
Journey” on the car stereo and watching the sunset pass by on
our left, I do my best to fade into the upholstery.

When the next opportunity to turn finally comes up,
Stallman hits his right turn signal in an attempt to cue the
driver ahead of us. No such luck. Once again, we creep slowly
through the intersection, coming to a stop a good 200 yards
before the next light. By now, Stallman is livid.

“It’s like he’s deliberately ignoring us,” he says, gesturing
and pantomiming like an air craft carrier landing-signals
officer in a futile attempt to catch our guide’s eye. The guide
appears unfazed, and for the next five minutes all we see is a
small portion of his head in the rearview mirror.

I look out Stallman’s window. Nearby Kahoolawe and Lanai
Islands provide an ideal frame for the setting sun. It’s a
breathtaking view, the kind that makes moments like this a bit
more bearable if you’re a Hawaiian native, I suppose. I try to
direct Stallman’s attention to it, but Stallman, by now obsessed
by the inattentiveness of the driver ahead of us, blows me off.

When the driver passes through another green light,
completely ignoring a “Pilani Highway Next Right,” I grit my
teeth. I remember an early warning relayed to me by BSD
programmer Keith Bostic. “Stallman does not suffer fools

gladly,” Bostic warned me. “If somebody says or does
something stupid, he’ll look them in the eye and say, `That’s
stupid.’”

Looking at the oblivious driver ahead of us, I realize that it’s
the stupidity, not the inconvenience, that’s killing Stallman
right now.

“It’s as if he picked this route with absolutely no thought on
how to get there efficiently,” Stallman says.

The word “efficiently” hangs in the air like a bad odor. Few
things irritate the hacker mind more than inefficiency. It was
the inefficiency of checking the Xerox laser printer two or
three times a day that triggered Stallman’s initial inquiry into
the printer source code. It was the inefficiency of rewriting
software tools hijacked by commercial software vendors that
led Stallman to battle Symbolics and to launch the GNU
Project. If, as Jean Paul Sartre once opined, hell is other
people, hacker hell is duplicating other people’s stupid
mistakes, and it’s no exaggeration to say that Stallman’s entire
life has been an attempt to save mankind from these fiery
depths.

This hell metaphor becomes all the more apparent as we
take in the slowly passing scenery. With its multitude of shops,
parking lots, and poorly timed street lights, Kihei seems less
like a city and more like a poorly designed software program
writ large. Instead of rerouting traffic and distributing vehicles
through side streets and expressways, city planners have
elected to run everything through a single main drag. From a
hacker perspective, sitting in a car amidst all this mess is like
listening to a CD rendition of nails on a chalkboard at full
volume.

“Imperfect systems infuriate hackers,” observes Steven
Levy, another warning I should have listened to before
climbing into the car with Stallman. “This is one reason why
hackers generally hate driving cars-the system of randomly
programmed red lights and oddly laid out one-way streets
causes delays which are so goddamn unnecessary [Levy’s
emphasis] that the impulse is to rearrange signs, open up
traffic-light control boxes . . . redesign the entire system.“See
Steven Levy, Hackers (Penguin USA [paperback], 1984): 40.

More frustrating, however, is the duplicity of our trusted
guide. Instead of searching out a clever shortcut-as any true
hacker would do on instinct-the driver ahead of us has instead
chosen to play along with the city planners’ game. Like Virgil
in Dante’s Inferno, our guide is determined to give us the full
guided tour of this hacker hell whether we want it or not.

Before I can make this observation to Stallman, the driver
finally hits his right turn signal. Stallman’s hunched shoulders
relax slightly, and for a moment the air of tension within the
car dissipates. The tension comes back, however, as the driver
in front of us slows down. “Construction Ahead” signs line
both sides of the street, and even though the Pilani Highway
lies less than a quarter mile off in the distance, the two-lane
road between us and the highway is blocked by a dormant
bulldozer and two large mounds of dirt.

It takes Stallman a few seconds to register what’s going on
as our guide begins executing a clumsy five-point U-turn in
front of us. When he catches a glimpse of the bulldozer and
the “No Through Access” signs just beyond, Stallman finally
boils over.

“Why, why, why?” he whines, throwing his head back. “You
should have known the road was blocked. You should have

known this way wouldn’t work. You did this deliberately.”

The driver finishes the turn and passes us on the way back
toward the main drag. As he does so, he shakes his head and
gives us an apologetic shrug. Coupled with a toothy grin, the
driver’s gesture reveals a touch of mainlander frustration but is
tempered with a protective dose of islander fatalism. Coming
through the sealed windows of our rental car, it spells out a
succinct message: “Hey, it’s Maui; what are you gonna do?”

Stallman can take it no longer.

“Don’t you fucking smile!” he shouts, fogging up the glass
as he does so. “It’s your fucking fault. This all could have been
so much easier if we had just done it my way.”

Stallman accents the words “my way” by gripping the
steering wheel and pulling himself towards it twice. The image
of Stallman’s lurching frame is like that of a child throwing a
temper tantrum in a car seat, an image further underlined by
the tone of Stallman’s voice. Halfway between anger and
anguish, Stallman seems to be on the verge of tears.

Fortunately, the tears do not arrive. Like a summer
cloudburst, the tantrum ends almost as soon as it begins. After
a few whiny gasps, Stallman shifts the car into reverse and
begins executing his own U-turn. By the time we are back on
the main drag, his face is as impassive as it was when we left
the hotel 30 minutes earlier.

It takes less than five minutes to reach the next cross-street.
This one offers easy highway access, and within seconds, we
are soon speeding off toward Pa’ia at a relaxing rate of speed.
The sun that once loomed bright and yellow over Stallman’s
left shoulder is now burning a cool orange-red in our rearview
mirror. It lends its color to the gauntlet wili wili trees flying
past us on both sides of the highway.

For the next 20 minutes, the only sound in our vehicle, aside
from the ambient hum of the car’s engine and tires, is the
sound of a cello and a violin trio playing the mournful strains
of an Appalachian folk tune. Endnote

Continuing the Fight

For Richard Stallman, time may not heal all wounds, but it
does provide a convenient ally.

Four years after ” The Cathedral and the Bazaar,” Stallman
still chafes over the Raymond critique. He also grumbles over
Linus Torvalds’ elevation to the role of world’s most famous
hacker. He recalls a popular T-shirt that began showing at
Linux tradeshows around 1999. Designed to mimic the
original promotional poster for Star Wars, the shirt depicted
Torvalds brandishing a lightsaber like Luke Skywalker, while
Stallman’s face rides atop R2D2. The shirt still grates on
Stallmans nerves not only because it depicts him as a
Torvalds’ sidekick, but also because it elevates Torvalds to the
leadership role in the free software/open source community, a
role even Torvalds himself is loath to accept. “It’s ironic,” says
Stallman mournfully. “Picking up that sword is exactly what
Linus refuses to do. He gets everybody focusing on him as the
symbol of the movement, and then he won’t fight. What good
is it?”

Then again, it is that same unwillingness to “pick up the
sword,” on Torvalds part, that has left the door open for
Stallman to bolster his reputation as the hacker community’s
ethical arbiter. Despite his grievances, Stallman has to admit
that the last few years have been quite good, both to himself
and to his organization. Relegated to the periphery by the
unforeseen success of GNU/Linux, Stallman has nonetheless
successfully recaptured the initiative. His speaking schedule

between January 2000 and December 2001 included stops on
six continents and visits to countries where the notion of
software freedom carries heavy overtones-China and India, for
example.

Outside the bully pulpit, Stallman has also learned how to
leverage his power as costeward of the GNU General Public
License (GPL). During the summer of 2000, while the air was
rapidly leaking out of the 1999 Linux IPO bubble, Stallman
and the Free Software Foundation scored two major victories.
In July, 2000, Troll Tech, a Norwegian software company and
developer of Qt, a valuable suite of graphics tools for the
GNU/Linux operating system, announced it was licensing its
software under the GPL. A few weeks later, Sun
Microsystems, a company that, until then, had been warily
trying to ride the open source bandwagon without giving up
total control of its software properties, finally relented and
announced that it, too, was dual licensing its new OpenOffice
application suite under the Lesser GNU Public License
(LGPL) and the Sun Industry Standards Source License
(SISSL).

Underlining each victory was the fact that Stallman had
done little to fight for them. In the case of Troll Tech, Stallman
had simply played the role of free software pontiff. In 1999,
the company had come up with a license that met the
conditions laid out by the Free Software Foundation, but in
examining the license further, Stallman detected legal
incompatibles that would make it impossible to bundle Qt with
GPL-protected software programs. Tired of battling Stallman,
Troll Tech management finally decided to split the Qt into two
versions, one GPL-protected and one QPL-protected, giving
developers a way around the compatibility issues cited by
Stallman.

In the case of Sun, they desired to play according to the Free
Software Foundation’s conditions. At the 1999 O’Reilly Open
Source Conference, Sun Microsystems cofounder and chief
scientist Bill Joy defended his company’s “community source”
license, essentially a watered-down compromise letting users
copy and modify Sun-owned software but not charge a fee for
said software without negotiating a royalty agreement with
Sun. A year after Joy’s speech, Sun Microsystems vice
president Marco Boerries was appearing on the same stage
spelling out the company’s new licensing compromise in the
case of OpenOffice, an office-application suite designed
specifically for the GNU/Linux operating system.

“I can spell it out in three letters,” said Boerries. “GPL.”

At the time, Boerries said his company’s decision had little
to do with Stallman and more to do with the momentum of
GPL-protected programs. “What basically happened was the
recognition that different products attracted different
communities, and the license you use depends on what type of
community you want to attract,” said Boerries. “With
[OpenOffice], it was clear we had the highest correlation with
the GPL community.“See Marco Boerries, interview with
author (July, 2000).

Such comments point out the under-recognized strength of
the GPL and, indirectly, the political genius of man who
played the largest role in creating it. “There isn’t a lawyer on
earth who would have drafted the GPL the way it is,” says
Eben Moglen, Columbia University law professor and Free
Software Foundation general counsel. “But it works. And it
works because of Richard’s philosophy of design.”

A former professional programmer, Moglen traces his pro
bono work with Stallman back to 1990 when Stallman

requested Moglen’s legal assistance on a private affair.
Moglen, then working with encryption expert Phillip
Zimmerman during Zimmerman’s legal battles with the
National Security Administration, says he was honored by the
request. “I told him I used Emacs every day of my life, and it
would take an awful lot of lawyering on my part to pay off the
debt.”

Since then, Moglen, perhaps more than any other individual,
has had the best chance to observe the crossover of Stallman’s
hacker philosophies into the legal realm. Moglen says the
difference between Stallman’s approach to legal code and
software code are largely the same. “I have to say, as a lawyer,
the idea that what you should do with a legal document is to
take out all the bugs doesn’t make much sense,” Moglen says.
“There is uncertainty in every legal process, and what most
lawyers want to do is to capture the benefits of uncertainty for
their client. Richard’s goal is the complete opposite. His goal
is to remove uncertainty, which is inherently impossible. It is
inherently impossible to draft one license to control all
circumstances in all legal systems all over the world. But if
you were to go at it, you would have to go at it his way. And
the resulting elegance, the resulting simplicity in design almost
achieves what it has to achieve. And from there a little
lawyering will carry you quite far.”

As the person charged with pushing the Stallman agenda,
Moglen understands the frustration of would-be allies.
“Richard is a man who does not want to compromise over
matters that he thinks of as fundamental,” Moglen says, “and
he does not take easily the twisting of words or even just the
seeking of artful ambiguity, which human society often
requires from a lot of people.”

Because of the Free Software Foundation’s unwillingness to
weigh in on issues outside the purview of GNU development
and GPL enforcement, Moglen has taken to devoting his
excess energies to assisting the Electronic Frontier
Foundation, the organization providing legal aid to recent
copyright defendants such as Dmitri Skylarov. In 2000,
Moglen also served as direct counsel to a collection of hackers
that were joined together from circulating the DVD decryption
program deCSS. Despite the silence of his main client in both
cases, Moglen has learned to appreciate the value of
Stallman’s stubbornness. “There have been times over the
years where I’ve gone to Richard and said, `We have to do
this. We have to do that. Here’s the strategic situation. Here’s
the next move. Here’s what he have to do.’ And Richard’s
response has always been, `We don’t have to do anything.’
Just wait. What needs doing will get done.”

“And you know what?” Moglen adds. “Generally, he’s been
right.”

Such comments disavow Stallman’s own self-assessment:
“I’m not good at playing games,” Stallman says, addressing
the many unseen critics who see him as a shrewd strategist.
“I’m not good at looking ahead and anticipating what
somebody else might do. My approach has always been to
focus on the foundation, to say `Let’s make the foundation as
strong as we can make it.’”

The GPL’s expanding popularity and continuing
gravitational strength are the best tributes to the foundation
laid by Stallman and his GNU colleagues. While no longer
capable of billing himself as the “last true hacker,” Stallman
nevertheless can take sole credit for building the free software
movement’s ethical framework. Whether or not other modern
programmers feel comfortable working inside that framework

is immaterial. The fact that they even have a choice at all is
Stallman’s greatest legacy.

Discussing Stallman’s legacy at this point seems a bit
premature. Stallman, 48 at the time of this writing, still has a
few years left to add to or subtract from that legacy. Still, the
autopilot nature of the free software movement makes it
tempting to examine Stallman’s life outside the day-to-day
battles of the software industry and within a more august,
historical setting.

To his credit, Stallman refuses all opportunities to speculate.
“I’ve never been able to work out detailed plans of what the
future was going to be like,” says Stallman, offering his own
premature epitaph. “I just said `I’m going to fight. Who knows
where I’ll get?’”

There’s no question that in picking his fights, Stallman has
alienated the very people who might otherwise have been his
greatest champions. It is also a testament to his forthright,
ethical nature that many of Stallman’s erstwhile political
opponents still manage to put in a few good words for him
when pressed. The tension between Stallman the ideologue
and Stallman the hacker genius, however, leads a biographer
to wonder: how will people view Stallman when Stallman’s
own personality is no longer there to get in the way?

In early drafts of this book, I dubbed this question the “100
year” question. Hoping to stimulate an objective view of
Stallman and his work, I asked various software-industry
luminaries to take themselves out of the current timeframe and
put themselves in a position of a historian looking back on the
free software movement 100 years in the future. From the
current vantage point, it is easy to see similarities between
Stallman and past Americans who, while somewhat marginal

during their lifetime, have attained heightened historical
importance in relation to their age. Easy comparisons include
Henry David Thoreau, transcendentalist philosopher and
author of On Civil Disobedience, and John Muir, founder of
the Sierra Club and progenitor of the modern environmental
movement. It is also easy to see similarities in men like
William Jennings Bryan, a.k.a. “The Great Commoner,” leader
of the populist movement, enemy of monopolies, and a man
who, though powerful, seems to have faded into historical
insignificance.

Although not the first person to view software as public
property, Stallman is guaranteed a footnote in future history
books thanks to the GPL. Given that fact, it seems worthwhile
to step back and examine Richard Stallman’s legacy outside
the current time frame. Will the GPL still be something
software programmers use in the year 2102, or will it have
long since fallen by the wayside? Will the term “free software”
seem as politically quaint as “free silver” does today, or will it
seem eerily prescient in light of later political events?

Predicting the future is risky sport, but most people, when
presented with the question, seemed eager to bite. “One
hundred years from now, Richard and a couple of other people
are going to deserve more than a footnote,” says Moglen.
“They’re going to be viewed as the main line of the story.”

The “couple other people” Moglen nominates for future
textbook chapters include John Gilmore, Stallman’s GPL
advisor and future founder of the Electronic Frontier
Foundation, and Theodor Holm Nelson, a.k.a. Ted Nelson,
author of the 1982 book, Literary Machines . Moglen says
Stallman, Nelson, and Gilmore each stand out in historically
significant, nonoverlapping ways. He credits Nelson,
commonly considered to have coined the term “hypertext,” for

identifying the predicament of information ownership in the
digital age. Gilmore and Stallman, meanwhile, earn notable
credit for identifying the negative political effects of
information control and building organizations-the Electronic
Frontier Foundation in the case of Gilmore and the Free
Software Foundation in the case of Stallman-to counteract
those effects. Of the two, however, Moglen sees Stallman’s
activities as more personal and less political in nature.

“Richard was unique in that the ethical implications of
unfree software were particularly clear to him at an early
moment,” says Moglen. “This has a lot to do with Richard’s
personality, which lots of people will, when writing about him,
try to depict as epiphenomenal or even a drawback in Richard
Stallman’s own life work.”

Gilmore, who describes his inclusion between the erratic
Nelson and the irascible Stallman as something of a “mixed
honor,” nevertheless seconds the Moglen argument. Writes
Gilmore: My guess is that Stallman’s writings will stand up as
well as Thomas Jefferson’s have; he’s a pretty clear writer and
also clear on his principles … Whether Richard will be as
influential as Jefferson will depend on whether the
abstractions we call “civil rights” end up more important a
hundred years from now than the abstractions that we call
“software” or “technically imposed restrictions.” Another
element of the Stallman legacy not to be overlooked, Gilmore
writes, is the collaborative software-development model
pioneered by the GNU Project. Although flawed at times, the
model has nevertheless evolved into a standard within the
software-development industry. All told, Gilmore says, this
collaborative software-development model may end up being
even more influential than the GNU Project, the GPL License,
or any particular software program developed by Stallman:

Before the Internet, it was quite hard to collaborate over
distance on software, even among teams that know and trust
each other. Richard pioneered collaborative development of
software, particularly by disorganized volunteers who seldom
meet each other. Richard didn’t build any of the basic tools for
doing this (the TCP protocol, email lists, diff and patch, tar
files, RCS or CVS or remote-CVS), but he used the ones that
were available to form social groups of programmers who
could effectively collaborate. Lawrence Lessig, Stanford law
professor and author of the 2001 book, The Future of Ideas , is
similarly bullish. Like many legal scholars, Lessig sees the
GPL as a major bulwark of the current so-called “digital
commons,” the vast agglomeration of community-owned
software programs, network and telecommunication standards
that have triggered the Internet’s exponential growth over the
last three decades. Rather than connect Stallman with other
Internet pioneers, men such as Vannevar Bush, Vinton Cerf,
and J. C. R. Licklider who convinced others to see computer
technology on a wider scale, Lessig sees Stallman’s impact as
more personal, introspective, and, ultimately, unique:
[Stallman] changed the debate from is to ought. He made
people see how much was at stake, and he built a device to
carry these ideals forward . . . That said, I don’t quite know
how to place him in the context of Cerf or Licklider. The
innovation is different. It is not just about a certain kind of
code, or enabling the Internet. [It’s] much more about getting
people to see the value in a certain kind of Internet. I don’t
think there is anyone else in that class, before or after. Not
everybody sees the Stallman legacy as set in stone, of course.
Eric Raymond, the open source proponent who feels that
Stallman’s leadership role has diminished significantly since
1996, sees mixed signals when looking into the 2102 crystal
ball: I think Stallman’s artifacts (GPL, Emacs, GCC) will be

seen as revolutionary works, as foundation-stones of the
information world. I think history will be less kind to some of
the theories from which RMS operated, and not kind at all to
his personal tendency towards territorial, cult-leader behavior.
As for Stallman himself, he, too, sees mixed signals: What
history says about the GNU Project, twenty years from now,
will depend on who wins the battle of freedom to use public
knowledge. If we lose, we will be just a footnote. If we win, it
is uncertain whether people will know the role of the GNU
operating system-if they think the system is “Linux,” they will
build a false picture of what happened and why.

But even if we win, what history people learn a hundred
years from now is likely to depend on who dominates
politically. Searching for his own 19th-century historical
analogy, Stallman summons the figure of John Brown, the
militant abolitionist regarded as a hero on one side of the
Mason Dixon line and a madman on the other.

John Brown’s slave revolt never got going, but during his
subsequent trial he effectively roused national demand for
abolition. During the Civil War, John Brown was a hero; 100
years after, and for much of the 1900s, history textbooks
taught that he was crazy. During the era of legal segregation,
while bigotry was shameless, the US partly accepted the story
that the South wanted to tell about itself, and history textbooks
said many untrue things about the Civil War and related
events.

Such comparisons document both the self-perceived
peripheral nature of Stallman’s current work and the binary
nature of his current reputation. Although it’s hard to see
Stallman’s reputation falling to the level of infamy as Brown’s
did during the post-Reconstruction period-Stallman, despite
his occasional war-like analogies, has done little to inspire

violence-it’s easy to envision a future in which Stallman’s
ideas wind up on the ash-heap. In fashioning the free software
cause not as a mass movement but as a collection of private
battles against the forces of proprietary temptation, Stallman
seems to have created a unwinnable situation, especially for
the many acolytes with the same stubborn will.

Then again, it is that very will that may someday prove to
be Stallman’s greatest lasting legacy. Moglen, a close observer
over the last decade, warns those who mistake the Stallman
personality as counter-productive or epiphenomenal to the
“artifacts” of Stalllman’s life. Without that personality, Moglen
says, there would be precious few artifiacts to discuss. Says
Moglen, a former Supreme Court clerk: Look, the greatest
man I ever worked for was Thurgood Marshall. I knew what
made him a great man. I knew why he had been able to change
the world in his possible way. I would be going out on a limb a
little bit if I were to make a comparison, because they could
not be more different. Thurgood Marshall was a man in
society, representing an outcast society to the society that
enclosed it, but still a man in society. His skill was social
skills. But he was all of a piece, too. Different as they were in
every other respect, that the person I most now compare him
to in that sense, all of a piece, compact, made of the substance
that makes stars, all the way through, is Stallman. In an effort
to drive that image home, Moglen reflects on a shared moment
in the spring of 2000. The success of the VA Linux IPO was
still resonating in the business media, and a half dozen free
software-related issues were swimming through the news.
Surrounded by a swirling hurricane of issues and stories each
begging for comment, Moglen recalls sitting down for lunch
with Stallman and feeling like a castaway dropped into the eye

of the storm. For the next hour, he says, the conversation
calmly revolved around a single topic: strengthening the GPL.

“We were sitting there talking about what we were going to
do about some problems in Eastern Europe and what we were
going to do when the problem of the ownership of content
began to threaten free software,” Moglen recalls. “As we were
talking, I briefly thought about how we must have looked to
people passing by. Here we are, these two little bearded
anarchists, plotting and planning the next steps. And, of
course, Richard is plucking the knots from his hair and
dropping them in the soup and behaving in his usual way.
Anybody listening in on our conversation would have thought
we were crazy, but I knew: I knew the revolution’s right here
at this table. This is what’s making it happen. And this man is
the person making it happen.”

Moglen says that moment, more than any other, drove home
the elemental simplicity of the Stallman style.

“It was funny,” recalls Moglen. “I said to him, `Richard,
you know, you and I are the two guys who didn’t make any
money out of this revolution.’ And then I paid for the lunch,
because I knew he didn’t have the money to pay for it .’”
Endnote

Epilogue:

Crushing Loneliness Writing the biography of a living
person is a bit like producing a play. The drama in front of the
curtain often pales in comparison to the drama backstage.

In The Autobiography of Malcolm X, Alex Haley gives
readers a rare glimpse of that backstage drama. Stepping out of
the ghostwriter role, Haley delivers the book’s epilogue in his
own voice. The epilogue explains how a freelance reporter
originally dismissed as a “tool” and “spy” by the Nation of

Islam spokesperson managed to work through personal and
political barriers to get Malcolm X’s life story on paper.

While I hesitate to compare this book with The
Autobiography of Malcolm X, I do owe a debt of gratitude to
Haley for his candid epilogue. Over the last 12 months, it has
served as a sort of instruction manual on how to deal with a
biographical subject who has built an entire career on being
disagreeable. From the outset, I envisioned closing this
biography with a similar epilogue, both as an homage to Haley
and as a way to let readers know how this book came to be.

The story behind this story starts in an Oakland apartment,
winding its way through the various locales mentioned in the
book-Silicon Valley, Maui, Boston, and Cambridge.
Ultimately, however, it is a tale of two cities: New York, New
York, the book-publishing capital of the world, and
Sebastopol, California, the book-publishing capital of Sonoma
County.

The story starts in April, 2000. At the time, I was writing
stories for the ill-fated BeOpen web site
(http://www.beopen.com/). One of my first assignments was a
phone interview with Richard M. Stallman. The interview
went well, so well that Slashdot (http://www.slashdot.org/), the
popular “news for nerds” site owned by VA Software, Inc.
(formerly VA Linux Systems and before that, VA Research),
gave it a link in its daily list of feature stories. Within hours,
the web servers at BeOpen were heating up as readers clicked
over to the site.

For all intents and purposes, the story should have ended
there. Three months after the interview, while attending the
O’Reilly Open Source Conference in Monterey, California, I

received the following email message from Tracy Pattison,
foreign-rights manager at a large New York publishing house:

To: sam@BeOpen.com Subject: RMS InterviewDate: Mon,
10
Jul 2000 15:56:37 -0400Dear Mr. Williams,

I read your interview with Richard Stallman on BeOpen
with great interest. I’ve been intrigued by RMS and his work
for some time now and was delighted to find your piece which
I really think you did a great job of capturing some of the spirit
of what Stallman is trying to do with GNU-Linux and the Free
Software Foundation.

What I’d love to do, however, is read more - and I don’t
think I’m alone. Do you think there is more information and/or
sources out there to expand and update your interview and
adapt it into more of a profile of Stallman? Perhaps including
some more anecdotal information about his personality and
background that might really interest and enlighten readers
outside the more hardcore programming scene?

The email asked that I give Tracy a call to discuss the idea
further. I did just that. Tracy told me her company was
launching a new electronic book line, and it wanted stories that
appealed to an early-adopter audience. The e-book format was
30,000 words, about 100 pages, and she had pitched her bosses
on the idea of profiling a major figure in the hacker
community. Her bosses liked the idea, and in the process of
searching for interesting people to profile, she had come
across my BeOpen interview with Stallman. Hence her email
to me.

That’s when Tracy asked me: would I be willing to expand
the interview into a full-length feature profile?

My answer was instant: yes. Before accepting it, Tracy
suggested I put together a story proposal she could show her
superiors. Two days later, I sent her a polished proposal. A
week later, Tracy sent me a follow up email. Her bosses had
given it the green light.

I have to admit, getting Stallman to participate in an e-book
project was an afterthought on my part. As a reporter who
covered the open source beat, I knew Stallman was a stickler.
I’d already received a half dozen emails at that point
upbraiding me for the use of “Linux” instead of
“GNU/Linux.”

Then again, I also knew Stallman was looking for ways to
get his message out to the general public. Perhaps if I
presented the project to him that way, he would be more
receptive. If not, I could always rely upon the copious amounts
of documents, interviews, and recorded online conversations
Stallman had left lying around the Internet and do an
unauthorized biography.

During my research, I came across an essay titled
“Freedom-Or Copyright?” Written by Stallman and published
in the June, 2000, edition of the MIT Technology Review, the
essay blasted e-books for an assortment of software sins. Not
only did readers have to use proprietary software programs to
read them, Stallman lamented, but the methods used to prevent
unauthorized copying were overly harsh. Instead of
downloading a transferable HTML or PDF file, readers
downloaded an encrypted file. In essence, purchasing an e-
book meant purchasing a nontransferable key to unscramble
the encrypted content. Any attempt to open a book’s content
without an authorized key constituted a criminal violation of
the Digital Millennium Copyright Act, the 1998 law designed
to bolster copyright enforcement on the Internet. Similar

penalties held for readers who converted a book’s content into
an open file format, even if their only intention was to read the
book on a different computer in their home. Unlike a normal
book, the reader no longer held the right to lend, copy, or resell
an e-book. They only had the right to read it on an authorized
machine, warned Stallman: We still have the same old
freedoms in using paper books. But if e-books replace printed
books, that exception will do little good. With “electronic ink,”
which makes it possible to download new text onto an
apparently printed piece of paper, even newspapers could
become ephemeral. Imagine: no more used book stores; no
more lending a book to your friend; no more borrowing one
from the public library-no more “leaks” that might give
someone a chance to read without paying. (And judging from
the ads for Microsoft Reader, no more anonymous purchasing
of books either.) This is the world publishers have in mind for
us.See “Safari Tech Books Online; Subscriber Agreement:
Terms of Service.”

http://safari.oreilly.com/mainhlp.asp?help=service
Needless to say, the essay caused some concern. Neither
Tracy nor I had discussed the software her company
would use nor had we discussed the type of copyright
that would govern the e-book’s usage. I mentioned the
Technology Review article and asked if she could give
me information on her company’s e-book policies. Tracy
promised to get back to me.

Eager to get started, I decided to call Stallman anyway and
mention the book idea to him. When I did, he expressed
immediate interest and immediate concern. “Did you read my
essay on e-books?” he asked.

When I told him, yes, I had read the essay and was waiting
to hear back from the publisher, Stallman laid out two

conditions: he didn’t want to lend support to an e-book
licensing mechanism he fundamentally opposed, and he didn’t
want to come off as lending support. “I don’t want to
participate in anything that makes me look like a hypocrite,”
he said.

For Stallman, the software issue was secondary to the
copyright issue. He said he was willing to ignore whatever
software the publisher or its third-party vendors employed just
so long as the company specified within the copyright that
readers were free to make and distribute verbatim copies of the
e-book’s content. Stallman pointed to Stephen King’s The
Plant as a possible model. In June, 2000, King announced on
his official web site that he was self-publishing The Plant in
serial form. According to the announcement, the book’s total
cost would be $13, spread out over a series of $1 installments.
As long as at least 75% of the readers paid for each chapter,
King promised to continue releasing new installments. By
August, the plan seemed to be working, as King had published
the first two chapters with a third on the way.

“I’d be willing to accept something like that,”
Stallman said. “As long as it also permitted verbatim
copying.”

I forwarded the information to Tracy. Feeling confident that
she and I might be able to work out an equitable arrangement,
I called up Stallman and set up the first interview for the book.
Stallman agreed to the interview without making a second
inquiry into the status issue. Shortly after the first interview, I
raced to set up a second interview (this one in Kihei),
squeezing it in before Stallman headed off on a 14-day
vacation to Tahiti.

It was during Stallman’s vacation that the bad news came
from Tracy. Her company’s legal department didn’t want to
adjust its copyright notice on the e-books. Readers who
wanted to make their books transferable would either have to
crack the encryption code or convert the book to an open
format such as HTML. Either way, the would be breaking the
law and facing criminal penalties.

With two fresh interviews under my belt, I didn’t see any
way to write the book without resorting to the new material. I
quickly set up a trip to New York to meet with my agent and
with Tracy to see if there was a compromise solution.

When I flew to New York, I met my agent, Henning
Guttman. It was our first face-to-face meeting, and Henning
seemed pessimistic about our chances of forcing a
compromise, at least on the publisher’s end. The large,
established publishing houses already viewed the e-book
format with enough suspicion and weren’t in the mood to
experiment with copyright language that made it easier for
readers to avoid payment. As an agent who specialized in
technology books, however, Henning was intrigued by the
novel nature of my predicament. I told him about the two
interviews I’d already gathered and the promise not to publish
the book in a way that made Stallman “look like a hypocrite.”
Agreeing that I was in an ethical bind, Henning suggested we
make that our negotiating point.

Barring that, Henning said, we could always take the carrot-
and-stick approach. The carrot would be the publicity that
came with publishing an e-book that honored the hacker
community’s internal ethics. The stick would be the risks
associated with publishing an e-book that didn’t. Nine months
before Dmitri Skylarov became an Internet cause celebre, we
knew it was only a matter of time before an enterprising

programmer revealed how to hack e-books. We also knew that
a major publishing house releasing an encryption-protected e-
book on Richard M. Stallman was the software equivalent of
putting “Steal This E-Book” on the cover.

After my meeting with Henning, I put a call into Stallman.
Hoping to make the carrot more enticing, I discussed a number
of potential compromises. What if the publisher released the
book’s content under a split license, something similar to what
Sun Microsystems had done with Open Office, the free
software desktop applications suite? The publisher could then
release commercial versions of the e-book under a normal
format, taking advantage of all the bells and whistles that went
with the e-book software, while releasing the copyable version
under a less aesthetically pleasing HTML format.

Stallman told me he didn’t mind the split-license idea, but
he did dislike the idea of making the freely copyable version
inferior to the restricted version. Besides, he said, the idea was
too cumbersome. Split licenses worked in the case of Sun’s
Open Office only because he had no control over the decision
making. In this case, Stallman said, he did have a way to
control the outcome. He could refuse to cooperate.

I made a few more suggestions with little effect. About the
only thing I could get out of Stallman was a concession that
the e-book’s copyright restrict all forms of file sharing to
“noncommercial redistribution.”

Before I signed off, Stallman suggested I tell the publisher
that I’d promised Stallman that the work would be free. I told
Stallman I couldn’t agree to that statement but that I did view
the book as unfinishable without his cooperation. Seemingly
satisfied, Stallman hung up with his usual sign-off line:
“Happy hacking.”

Henning and I met with Tracy the next day. Tracy said her
company was willing to publish copyable excerpts in a
unencrypted format but would limit the excerpts to 500 words.
Henning informed her that this wouldn’t be enough for me to
get around my ethical obligation to Stallman. Tracy mentioned
her own company’s contractual obligation to online vendors
such as Amazon.com. Even if the company decided to open up
its e-book content this one time, it faced the risk of its partners
calling it a breach of contract. Barring a change of heart in the
executive suite or on the part of Stallman, the decision was up
to me. I could use the interviews and go against my earlier
agreement with Stallman, or I could plead journalistic ethics
and back out of the verbal agreement to do the book.

Following the meeting, my agent and I relocated to a pub on
Third Ave. I used his cell phone to call Stallman, leaving a
message when nobody answered. Henning left for a moment,
giving me time to collect my thoughts. When he returned, he
was holding up the cell phone.

“It’s Stallman,” Henning said.

The conversation got off badly from the start. I relayed
Tracy’s comment about the publisher’s contractual obligations.

“So,” Stallman said bluntly. “Why should I give a damn
about their contractual obligations?”

Because asking a major publishing house to risk a legal
battle with its vendors over a 30,000 word e-book is a tall
order, I suggested.

“Don’t you see?” Stallman said. “That’s exactly why I’m
doing this. I want a signal victory. I want them to make a
choice between freedom and business as usual.”

As the words “signal victory” echoed in my head, I felt my
attention wander momentarily to the passing foot traffic on the
sidewalk. Coming into the bar, I had been pleased to notice
that the location was less than half a block away from the
street corner memorialized in the 1976 Ramones song, “53rd
and 3rd,” a song I always enjoyed playing in my days as a
musician. Like the perpetually frustrated street hustler
depicted in that song, I could feel things falling apart as
quickly as they had come together. The irony was palpable.
After weeks of gleefully recording other people’s laments, I
found myself in the position of trying to pull off the rarest of
feats: a Richard Stallman compromise.

When I continued hemming and hawing, pleading the
publisher’s position and revealing my growing sympathy for
it, Stallman, like an animal smelling blood, attacked.

“So that’s it? You’re just going to screw me? You’re just
going to bend to their will?”

I brought up the issue of a dual-copyright again.

“You mean license,” Stallman said curtly.

“Yeah, license. Copyright. Whatever,” I said, feeling
suddenly like a wounded tuna trailing a rich plume of plasma
in the water.

“Aw, why didn’t you just fucking do what I told you to do!”
he shouted.

I must have been arguing on behalf of the publisher to the
very end, because in my notes I managed to save a final
Stallman chestnut: “I don’t care. What they’re doing is evil. I
can’t support evil. Good-bye.”

As soon as I put the phone down, my agent slid a freshly
poured Guinness to me. “I figured you might need this,” he

said with a laugh. “I could see you shaking there towards the
end.”

I was indeed shaking. The shaking wouldn’t stop until the
Guinness was more than halfway gone. It felt weird, hearing
myself characterized as an emissary of “evil.” It felt weirder
still, knowing that three months before, I was sitting in an
Oakland apartment trying to come up with my next story idea.
Now, I was sitting in a part of the world I’d only known
through rock songs, taking meetings with publishing
executives and drinking beer with an agent I’d never even laid
eyes on until the day before. It was all too surreal, like
watching my life reflected back as a movie montage.

About that time, my internal absurdity meter kicked in. The
initial shaking gave way to convulsions of laughter. To my
agent, I must have looked like a another fragile author
undergoing an untimely emotional breakdown. To me, I was
just starting to appreciate the cynical beauty of my situation.
Deal or no deal, I already had the makings of a pretty good
story. It was only a matter of finding a place to tell it. When
my laughing convulsions finally subsided, I held up my drink
in a toast.

“Welcome to the front lines, my friend,” I said, clinking
pints with my agent. “Might as well enjoy it.”

If this story really were a play, here’s where it would take a
momentary, romantic interlude. Disheartened by the tense
nature of our meeting, Tracy invited Henning and I to go out
for drinks with her and some of her coworkers. We left the bar
on Third Ave., headed down to the East Village, and caught up
with Tracy and her friends.

Once there, I spoke with Tracy, careful to avoid shop talk.
Our conversation was pleasant, relaxed. Before parting, we

agreed to meet the next night. Once again, the conversation
was pleasant, so pleasant that the Stallman e-book became
almost a distant memory.

When I got back to Oakland, I called around to various
journalist friends and acquaintances. I recounted my
predicament. Most upbraided me for giving up too much
ground to Stallman in the preinterview negotiation. A former
j-school professor suggested I ignore Stallman’s “hypocrite”
comment and just write the story. Reporters who knew of
Stallman’s media-savviness expressed sympathy but uniformly
offered the same response: it’s your call.

I decided to put the book on the back burner. Even with the
interviews, I wasn’t making much progress. Besides, it gave
me a chance to speak with Tracy without running things past
Henning first. By Christmas we had traded visits: she flying
out to the west coast once, me flying out to New York a
second time. The day before New Year’s Eve, I proposed.
Deciding which coast to live on, I picked New York. By
February, I packed up my laptop computer and all my research
notes related to the Stallman biography, and we winged our
way to JFK Airport. Tracy and I were married on May 11. So
much for failed book deals.

During the summer, I began to contemplate turning my
interview notes into a magazine article. Ethically, I felt in the
clear doing so, since the original interview terms said nothing
about traditional print media. To be honest, I also felt a bit
more comfortable writing about Stallman after eight months of
radio silence. Since our telephone conversation in September,
I’d only received two emails from Stallman. Both chastised
me for using “Linux” instead of “GNU/Linux” in a pair of
articles for the web magazine Upside Today. Aside from that, I
had enjoyed the silence. In June, about a week after the New

York University speech, I took a crack at writing a 5,000-word
magazine-length story about Stallman. This time, the words
flowed. The distance had helped restore my lost sense of
emotional perspective, I suppose.

In July, a full year after the original email from Tracy, I got
a call from Henning. He told me that O’Reilly & Associates, a
publishing house out of Sebastopol, California, was interested
in the running the Stallman story as a biography. The news
pleased me. Of all the publishing houses in the world,
O’Reilly, the same company that had published Eric
Raymond’s The Cathedral and the Bazaar, seemed the most
sensitive to the issues that had killed the earlier e-book. As a
reporter, I had relied heavily on the O’Reilly book Open
Sources as a historical reference. I also knew that various
chapters of the book, including a chapter written by Stallman,
had been published with copyright notices that permitted
redistribution. Such knowledge would come in handy if the
issue of electronic publication ever came up again.

Sure enough, the issue did come up. I learned through
Henning that O’Reilly intended to publish the biography both
as a book and as part of its new Safari Tech Books Online
subscription service. The Safari user license would involve
special restrictions,1 Henning warned, but O’Reilly was
willing to allow for a copyright that permitted users to copy
and share and the book’s text regardless of medium. Basically,
as author, I had the choice between two licenses: the Open
Publication License or the GNU Free Documentation License.

I checked out the contents and background of each license.
The Open Publication License (OPL)See “The Open
Publication License: Draft v1.0” (June 8, 1999).

http://opencontent.org/openpub/
 gives readers the right to reproduce and distribute a
work, in whole or in part, in any medium “physical or
electronic,” provided the copied work retains the Open
Publication License. It also permits modification of a
work, provided certain conditions are met. Finally, the
Open Publication License includes a number of options,
which, if selected by the author, can limit the
creation of “substantively modified” versions or
book-form derivatives without prior author approval.

The GNU Free Documentation License (GFDL),See “The
GNU Free Documentation
License: Version 1.1”
(March, 2000).

http://www.gnu.org/copyleft/fdl.html
 meanwhile, permits the copying and distribution of a
document in any medium, provided the resulting work
carries the same license. It also permits the
modification of a document provided certain conditions.
Unlike the OPL, however, it does not give authors the
option to restrict certain modifications. It also does
not give authors the right to reject modifications that
might result in a competitive book product. It does
require certain forms of front- and back-cover
information if a party other than the copyright holder
wishes to publish more than 100 copies of a protected
work, however.

In the course of researching the licenses, I also made sure to
visit the GNU Project web page titled “Various Licenses and
Comments About Them.“See
http://www.gnu.org/philosophy/license-list.html On that page,
I found a Stallman critique of the Open Publication License.

Stallman’s critique related to the creation of modified works
and the ability of an author to select either one of the OPL’s
options to restrict modification. If an author didn’t want to
select either option, it was better to use the GFDL instead,
Stallman noted, since it minimized the risk of the nonselected
options popping up in modified versions of a document.

The importance of modification in both licenses was a
reflection of their original purpose-namely, to give software-
manual owners a chance to improve their manuals and
publicize those improvements to the rest of the community.
Since my book wasn’t a manual, I had little concern about the
modification clause in either license. My only concern was
giving users the freedom to exchange copies of the book or
make copies of the content, the same freedom they would have
enjoyed if they purchased a hardcover book. Deeming either
license suitable for this purpose, I signed the O’Reilly contract
when it came to me.

Still, the notion of unrestricted modification intrigued me.
In my early negotiations with Tracy, I had pitched the merits
of a GPL-style license for the e-book’s content. At worst, I
said, the license would guarantee a lot of positive publicity for
the e-book. At best, it would encourage readers to participate
in the book-writing process. As an author, I was willing to let
other people amend my work just so long as my name always
got top billing. Besides, it might even be interesting to watch
the book evolve. I pictured later editions looking much like
online versions of the Talmud, my original text in a central
column surrounded by illuminating, third-party commentary in
the margins.

My idea drew inspiration from Project Xanadu
(http://www.xanadu.com/), the legendary software concept
originally conceived by Ted Nelson in 1960. During the

O’Reilly Open Source Conference in 1999, I had seen the first
demonstration of the project’s open source offshoot Udanax
and had been wowed by the result. In one demonstration
sequence, Udanax displayed a parent document and a
derivative work in a similar two-column, plain-text format.
With a click of the button, the program introduced lines
linking each sentence in the parent to its conceptual offshoot
in the derivative. An e-book biography of Richard M. Stallman
didn’t have to be Udanax-enabled, but given such
technological possibilities, why not give users a chance to play
around?Anybody willing to “port” this book over to Udanax,
the free software version of Xanadu, will receive enthusiastic
support from me. To find out more about this intriguing
technology, visit

http://www.udanax.com/.

When Laurie Petrycki, my editor at O’Reilly, gave me a
choice between the OPL or the GFDL, I indulged the fantasy
once again. By September of 2001, the month I signed the
contract, e-books had become almost a dead topic. Many
publishing houses, Tracy’s included, were shutting down their
e-book imprints for lack of interest. I had to wonder. If these
companies had treated e-books not as a form of publication but
as a form of community building, would those imprints have
survived?

After I signed the contract, I notified Stallman that the book
project was back on. I mentioned the choice O’Reilly was
giving me between the Open Publication License and the GNU
Free Documentation License. I told him I was leaning toward
the OPL, if only for the fact I saw no reason to give O’Reilly’s
competitors a chance to print the same book under a different
cover. Stallman wrote back, arguing in favor of the GFDL,
noting that O’Reilly had already used it several times in the

past. Despite the events of the past year, I suggested a deal. I
would choose the GFDL if it gave me the possibility to do
more interviews and if Stallman agreed to help O’Reilly
publicize the book. Stallman agreed to participate in more
interviews but said that his participation in publicity-related
events would depend on the content of the book. Viewing this
as only fair, I set up an interview for December 17, 2001 in
Cambridge.

I set up the interview to coincide with a business trip my
wife Tracy was taking to Boston. Two days before leaving,
Tracy suggested I invite Stallman out to dinner.

“After all,” she said, “he is the one who brought us
together.”

I sent an email to Stallman, who promptly sent a return
email accepting the offer. When I drove up to Boston the next
day, I met Tracy at her hotel and hopped the T to head over to
MIT. When we got to Tech Square, I found Stallman in the
middle of a conversation just as we knocked on the door.

“I hope you don’t mind,” he said, pulling the door open far
enough so that Tracy and I could just barely hear Stallman’s
conversational counterpart. It was a youngish woman, mid-20s
I’d say, named Sarah.

“I took the liberty of inviting somebody else to have dinner
with us,” Stallman said, matter-of-factly, giving me the same
cat-like smile he gave me back in that Palo Alto restaurant.

To be honest, I wasn’t too surprised. The news that Stallman
had a new female friend had reached me a few weeks before,
courtesy of Stallman’s mother. “In fact, they both went to
Japan last month when Richard went over to accept the Takeda
Award,” Lippman told me at the time.Alas, I didn’t find out
about the Takeda Foundation’s decision to award Stallman,

along with Linus Torvalds and Ken Sakamura, with its first-
ever award for “Techno-Entrepreneurial Achievement for
Social/Economic Well-Being” until after Stallman had made
the trip to Japan to accept the award. For more information
about the award and its accompanying $1 million prize, visit
the Takeda site, http://www.takeda-foundation.jp/.

On the way over to the restaurant, I learned the
circumstances of Sarah and Richard’s first meeting.
Interestingly, the circumstances were very familiar. Working
on her own fictional book, Sarah said she heard about
Stallman and what an interesting character he was. She
promptly decided to create a character in her book on Stallman
and, in the interests of researching the character, set up an
interview with Stallman. Things quickly went from there. The
two had been dating since the beginning of 2001, she said.

“I really admired the way Richard built up an entire political
movement to address an issue of profound personal concern,”
Sarah said, explaining her attraction to Stallman.

My wife immediately threw back the question: “What was
the issue?”

“Crushing loneliness.”

During dinner, I let the women do the talking and spent
most of the time trying to detect clues as to whether the last 12
months had softened Stallman in any significant way. I didn’t
see anything to suggest they had. Although more flirtatious
than I remembered-a flirtatiousness spoiled somewhat by the
number of times Stallman’s eyes seemed to fixate on my
wife’s chest-Stallman retained the same general level of
prickliness. At one point, my wife uttered an emphatic “God
forbid” only to receive a typical Stallman rebuke.

“I hate to break it to you, but there is no God,”
Stallman said.

Afterwards, when the dinner was complete and Sarah had
departed, Stallman seemed to let his guard down a little. As we
walked to a nearby bookstore, he admitted that the last 12
months had dramatically changed his outlook on life. “I
thought I was going to be alone forever,” he said. “I’m glad I
was wrong.”

Before parting, Stallman handed me his “pleasure card,” a
business card listing Stallman’s address, phone number, and
favorite pastimes (“sharing good books, good food and exotic
music and dance”) so that I might set up a final interview.

<Graphic file:/home/craigm/books/free_ep10.png>

Stallman’s “pleasure” card, handed to me the night of our
dinner.

The next day, over another meal of dim sum, Stallman
seemed even more lovestruck than the night before. Recalling
his debates with Currier House dorm maters over the benefits
and drawbacks of an immortality serum, Stallman expressed
hope that scientists might some day come up with the key to
immortality. “Now that I’m finally starting to have happiness
in my life, I want to have more,” he said.

When I mentioned Sarah’s “crushing loneliness” comment,
Stallman failed to see a connection between loneliness on a
physical or spiritual level and loneliness on a hacker level.
“The impulse to share code is about friendship but friendship
at a much lower level,” he said. Later, however, when the
subject came up again, Stallman did admit that loneliness, or
the fear of perpetual loneliness, had played a major role in
fueling his determination during the earliest days of the GNU
Project.

“My fascination with computers was not a consequence of
anything else,” he said. “I wouldn’t have been less fascinated
with computers if I had been popular and all the women
flocked to me. However, it’s certainly true the experience of
feeling I didn’t have a home, finding one and losing it, finding
another and having it destroyed, affected me deeply. The one I
lost was the dorm. The one that was destroyed was the AI Lab.
The precariousness of not having any kind of home or
community was very powerful. It made me want to fight to get
it back.”

After the interview, I couldn’t help but feel a certain sense
of emotional symmetry. Hearing Sarah describe what attracted
her to Stallman and hearing Stallman himself describe the
emotions that prompted him to take up the free software cause,
I was reminded of my own reasons for writing this book. Since
July, 2000, I have learned to appreciate both the seductive and
the repellent sides of the Richard Stallman persona. Like Eben
Moglen before me, I feel that dismissing that persona as
epiphenomenal or distracting in relation to the overall free
software movement would be a grievous mistake. In many
ways the two are so mutually defining as to be
indistinguishable.

While I’m sure not every reader feels the same level of
affinity for Stallman-indeed, after reading this book, some
might feel zero affinity-I’m sure most will agree. Few
individuals offer as singular a human portrait as Richard M.
Stallman. It is my sincere hope that, with this initial portrait
complete and with the help of the GFDL, others will feel a
similar urge to add their own perspective to that portrait.

Appendix A : Terminology

For the most part, I have chosen to use the term GNU/Linux
in reference to the free software operating system and Linux
when referring specifically to the kernel that drives the
operating system. The most notable exception to this rule
comes in Chapter 9 . In the final part of that chapter, I describe
the early evolution of Linux as an offshoot of Minix. It is safe
to say that during the first two years of the project’s
development, the operating system Torvalds and his
colleagues were working on bore little similarity to the GNU
system envisioned by Stallman, even though it gradually
began to share key components, such as the GNU C Compiler
and the GNU Debugger.

This decision further benefits from the fact that, prior to
1993, Stallman saw little need to insist on credit.

Some might view the decision to use GNU/Linux for later
versions of the same operating system as arbitrary. I would
like to point out that it was in no way a prerequisite for gaining
Stallman’s cooperation in the making of this book. I came to it
of my own accord, partly because of the operating system’s
modular nature and the community surrounding it, and partly
because of the apolitical nature of the Linux name. Given that
this is a biography of Richard Stallman, it seemed
inappropriate to define the operating system in apolitical
terms.

In the final phases of the book, when it became clear that
O’Reilly & Associates would be the book’s publisher,
Stallman did make it a condition that I use “GNU/Linux”
instead of Linux if O’Reilly expected him to provide
promotional support for the book after publication. When
informed of this, I relayed my earlier decision and left it up to
Stallman to judge whether the resulting book met this

condition or not. At the time of this writing, I have no idea
what Stallman’s judgment will be.

A similar situation surrounds the terms “free software” and
“open source.” Again, I have opted for the more politically
laden “free software” term when describing software programs
that come with freely copyable and freely modifiable source
code. Although more popular, I have chosen to use the term
“open source” only when referring to groups and businesses
that have championed its usage. But for a few instances, the
terms are completely interchangeable, and in making this
decision I have followed the advice of Christine Peterson, the
person generally credited with coining the term. “The `free
software’ term should still be used in circumstances where it
works better,” Peterson writes. “[`Open source’] caught on
mainly because a new term was greatly needed, not because
it’s ideal.”

Appendix B Hack, Hackers, and Hacking

To understand the full meaning of the word ” hacker,” it
helps to examine the word’s etymology over the years.

The New Hacker Dictionary , an online compendium of
software-programmer jargon, officially lists nine different
connotations of the word “hack” and a similar number for
“hacker.” Then again, the same publication also includes an
accompanying essay that quotes Phil Agre, an MIT hacker
who warns readers not to be fooled by the word’s perceived
flexibility. “Hack has only one meaning,” argues Agre. “An
extremely subtle and profound one which defies articulation.”

Regardless of the width or narrowness of the definition,
most modern hackers trace the word back to MIT, where the
term bubbled up as popular item of student jargon in the early
1950s. In 1990 the MIT Museum put together a journal

documenting the hacking phenomenon. According to the
journal, students who attended the institute during the fifties
used the word “hack” the way a modern student might use the
word “goof.” Hanging a jalopy out a dormitory window was a
“hack,” but anything harsh or malicious-e.g., egging a rival
dorm’s windows or defacing a campus statue-fell outside the
bounds. Implicit within the definition of “hack” was a spirit of
harmless, creative fun.

This spirit would inspire the word’s gerund form:
“hacking.” A 1950s student who spent the better part of the
afternoon talking on the phone or dismantling a radio might
describe the activity as “hacking.” Again, a modern speaker
would substitute the verb form of “goof”-“goofing” or
“goofing off”-to describe the same activity.

As the 1950s progressed, the word “hack” acquired a
sharper, more rebellious edge. The MIT of the 1950s was
overly competitive, and hacking emerged as both a reaction to
and extension of that competitive culture. Goofs and pranks
suddenly became a way to blow off steam, thumb one’s nose
at campus administration, and indulge creative thinking and
behavior stifled by the Institute’s rigorous undergraduate
curriculum. With its myriad hallways and underground steam
tunnels, the Institute offered plenty of exploration
opportunities for the student undaunted by locked doors and
“No Trespassing” signs. Students began to refer to their off-
limits explorations as “tunnel hacking.” Above ground, the
campus phone system offered similar opportunities. Through
casual experimentation and due diligence, students learned
how to perform humorous tricks. Drawing inspiration from the
more traditional pursuit of tunnel hacking, students quickly
dubbed this new activity “phone hacking.”

The combined emphasis on creative play and restriction-free
exploration would serve as the basis for the future mutations
of the hacking term. The first self-described computer hackers
of the 1960s MIT campus originated from a late 1950s student
group called the Tech Model Railroad Club. A tight clique
within the club was the Signals and Power (S&P) Committee-
the group behind the railroad club’s electrical circuitry system.
The system was a sophisticated assortment of relays and
switches similar to the kind that controlled the local campus
phone system. To control it, a member of the group simply
dialed in commands via a connected phone and watched the
trains do his bidding.

The nascent electrical engineers responsible for building
and maintaining this system saw their activity as similar in
spirit to phone hacking. Adopting the hacking term, they
began refining it even further. From the S&P hacker point of
view, using one less relay to operate a particular stretch of
track meant having one more relay for future play. Hacking
subtly shifted from a synonym for idle play to a synonym for
idle play that improved the overall performance or efficiency
of the club’s railroad system at the same time. Soon S&P
committee members proudly referred to the entire activity of
improving and reshaping the track’s underlying circuitry as
“hacking” and to the people who did it as “hackers.”

Given their affinity for sophisticated electronics-not to
mention the traditional MIT-student disregard for closed doors
and “No Trespassing” signs-it didn’t take long before the
hackers caught wind of a new machine on campus. Dubbed the
TX-0, the machine was one of the first commercially marketed
computers. By the end of the 1950s, the entire S&P clique had
migrated en masse over to the TX-0 control room, bringing the
spirit of creative play with them. The wide-open realm of

computer programming would encourage yet another mutation
in etymology. “To hack” no longer meant soldering unusual
looking circuits, but cobbling together software programs with
little regard to “official” methods or software-writing
procedures. It also meant improving the efficiency and speed
of already-existing programs that tended to hog up machine
resources. True to the word’s roots, it also meant writing
programs that served no other purpose than to amuse or
entertain.

A classic example of this expanded hacking definition is the
game Spacewar, the first interactive video game. Developed
by MIT hackers in the early 1960s, Spacewar had all the
traditional hacking definitions: it was goofy and random,
serving little useful purpose other than providing a nightly
distraction for the dozen or so hackers who delighted in
playing it. From a software perspective, however, it was a
monumental testament to innovation of programming skill. It
was also completely free. Because hackers had built it for fun,
they saw no reason to guard their creation, sharing it
extensively with other programmers. By the end of the 1960s,
Spacewar had become a favorite diversion for mainframe
programmers around the world.

This notion of collective innovation and communal software
ownership distanced the act of computer hacking in the 1960s
from the tunnel hacking and phone hacking of the 1950s. The
latter pursuits tended to be solo or small-group activities.
Tunnel and phone hackers relied heavily on campus lore, but
the off-limits nature of their activity discouraged the open
circulation of new discoveries. Computer hackers, on the other
hand, did their work amid a scientific field biased toward
collaboration and the rewarding of innovation. Hackers and
“official” computer scientists weren’t always the best of allies,

but in the rapid evolution of the field, the two species of
computer programmer evolved a cooperative-some might say
symbiotic-relationship.

It is a testament to the original computer hackers’
prodigious skill that later programmers, including Richard M.
Stallman, aspired to wear the same hacker mantle. By the mid
to late 1970s, the term “hacker” had acquired elite
connotations. In a general sense, a computer hacker was any
person who wrote software code for the sake of writing
software code. In the particular sense, however, it was a
testament to programming skill. Like the term “artist,” the
meaning carried tribal overtones. To describe a fellow
programmer as hacker was a sign of respect. To describe
oneself as a hacker was a sign of immense personal
confidence. Either way, the original looseness of the computer-
hacker appellation diminished as computers became more
common.

As the definition tightened, “computer” hacking acquired
additional semantic overtones. To be a hacker, a person had to
do more than write interesting software; a person had to
belong to the hacker “culture” and honor its traditions the
same way a medieval wine maker might pledge membership to
a vintners’ guild. The social structure wasn’t as rigidly
outlined as that of a guild, but hackers at elite institutions such
as MIT, Stanford, and Carnegie Mellon began to speak openly
of a “hacker ethic”: the yet-unwritten rules that governed a
hacker’s day-to-day behavior. In the 1984 book Hackers,
author Steven Levy, after much research and consultation,
codified the hacker ethic as five core hacker tenets.

In many ways, the core tenets listed by Levy continue to
define the culture of computer hacking. Still, the guild-like
image of the hacker community was undermined by the

overwhelmingly populist bias of the software industry. By the
early 1980s, computers were popping up everywhere, and
programmers who once would have had to travel to top-rank
institutions or businesses just to gain access to a machine
suddenly had the ability to rub elbows with major-league
hackers via the ARPAnet. The more these programmers
rubbed elbows, the more they began to appropriate the
anarchic philosophies of the hacker culture in places like MIT.
Lost within the cultural transfer, however, was the native MIT
cultural taboo against malicious behavior. As younger
programmers began employing their computer skills to
harmful ends-creating and disseminating computer viruses,
breaking into military computer systems, deliberately causing
machines such as MIT Oz, a popular ARPAnet gateway, to
crash-the term “hacker” acquired a punk, nihilistic edge. When
police and businesses began tracing computer-related crimes
back to a few renegade programmers who cited convenient
portions of the hacking ethic in defense of their activities, the
word “hacker” began appearing in newspapers and magazine
stories in a negative light. Although books like Hackers did
much to document the original spirit of exploration that gave
rise to the hacking culture, for most news reporters, “computer
hacker” became a synonym for “electronic burglar.”

Although hackers have railed against this perceived
misusage for nearly two decades, the term’s rebellious
connotations dating back to the 1950s make it hard to discern
the 15-year-old writing software programs that circumvent
modern encryption programs from the 1960s college student,
picking locks and battering down doors to gain access to the
lone, office computer terminal. One person’s creative
subversion of authority is another person’s security headache,
after all. Even so, the central taboo against malicious or

deliberately harmful behavior remains strong enough that most
hackers prefer to use the term ” cracker”-i.e., a person who
deliberately cracks a computer security system to steal or
vandalize data-to describe the subset of hackers who apply
their computing skills maliciously.

This central taboo against maliciousness remains the
primary cultural link between the notion of hacking in the
early 21st century and hacking in the 1950s. It is important to
note that, as the idea of computer hacking has evolved over the
last four decades, the original notion of hacking-i.e.,
performing pranks or exploring underground tunnels-remains
intact. In the fall of 2000, the MIT Museum paid tradition to
the Institute’s age-old hacking tradition with a dedicated
exhibit, the Hall of Hacks. The exhibit includes a number of
photographs dating back to the 1920s, including one involving
a mock police cruiser. In 1993, students paid homage to the
original MIT notion of hacking by placing the same police
cruiser, lights flashing, atop the Institute’s main dome. The
cruiser’s vanity license plate read IHTFP, a popular MIT
acronym with many meanings. The most noteworthy version,
itself dating back to the pressure-filled world of MIT student
life in the 1950s, is “I hate this fucking place.” In 1990,
however, the Museum used the acronym as a basis for a
journal on the history of hacks. Titled, The Institute for Hacks
Tomfoolery and Pranks, the journal offers an adept summary
of the hacking.

“In the culture of hacking, an elegant, simple creation is as
highly valued as it is in pure science,” writes Boston Globe
reporter Randolph Ryan in a 1993 article attached to the police
car exhibit. “A Hack differs from the ordinary college prank in
that the event usually requires careful planning, engineering
and finesse, and has an underlying wit and inventiveness,”

Ryan writes. “The unwritten rule holds that a hack should be
good-natured, non-destructive and safe. In fact, hackers
sometimes assist in dismantling their own handiwork.”

The urge to confine the culture of computer hacking within
the same ethical boundaries is well-meaning but impossible.
Although most software hacks aspire to the same spirit of
elegance and simplicity, the software medium offers less
chance for reversibility. Dismantling a police cruiser is easy
compared with dismantling an idea, especially an idea whose
time has come. Hence the growing distinction between “black
hat” and “white hat”-i.e., hackers who turn new ideas toward
destructive, malicious ends versus hackers who turn new ideas
toward positive or, at the very least, informative ends.

Once a vague item of obscure student jargon, the word
“hacker” has become a linguistic billiard ball, subject to
political spin and ethical nuances. Perhaps this is why so many
hackers and journalists enjoy using it. Where that ball bounces
next, however, is anybody’s guess.

Appendix C GNU Free Documentation License (GFDL)

GNU Free Documentation License Version 1.1, March 2000
Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple
Place, Suite 330, Boston, MA 02111-1307 USA Everyone is
permitted to copy and distribute verbatim copies of this license
document, but changing it is not allowed. PREAMBLE The
purpose of this License is to make a manual, textbook, or other
written document “free” in the sense of freedom: to assure
everyone the effective freedom to copy and redistribute it, with
or without modifying it, either commercially or
noncommercially. Secondarily, this License preserves for the
author and publisher a way to get credit for their work, while

not being considered responsible for modifications made by
others.

This License is a kind of “copyleft,” which means that
derivative works of the document must themselves be free in
the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals
for free software, because free software needs free
documentation: a free program should come with manuals
providing the same freedoms that the software does. But this
License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is
published as a printed book. We recommend this License
principally for works whose purpose is instruction or
reference. APPLICABILITY AND DEFINITIONS This
License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be
distributed under the terms of this License. The “Document”,
below, refers to any such manual or work. Any member of the
public is a licensee, and is addressed as “you.”

A “Modified Version” of the Document means any work
containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another
language.

A “Secondary Section” is a named appendix or a front-
matter section of the Document that deals exclusively with the
relationship of the publishers or authors of the Document to
the Document’s overall subject (or to related matters) and
contains nothing that could fall directly within that overall
subject. (For example, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any

mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections
whose titles are designated, as being those of
Invariant Sections, in the notice that says that the
Document is released under this License.

The “Cover Texts” are certain short passages of text that are
listed, as Front-Cover Texts or Back-Cover Texts, in the notice
that says that the Document is released under this License.

A “Transparent” copy of the Document means a machine-
readable copy, represented in a format whose specification is
available to the general public, whose contents can be viewed
and edited directly and straightforwardly with generic text
editors or (for images composed of pixels) generic paint
programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for
automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent
file format whose markup has been designed to thwart or
discourage subsequent modification by readers is not
Transparent. A copy that is not “Transparent” is called
“Opaque.”

Examples of suitable formats for Transparent copies include
plain ASCII without markup, Texinfo input format, LaTeX
input format, SGML or XML using a publicly available DTD,
and standard-conforming simple HTML designed for human
modification. Opaque formats include PostScript, PDF,
proprietary formats that can be read and edited only by
proprietary word processors, SGML or XML for which the
DTD and/or processing tools are not generally available, and
the machine-generated HTML produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page
itself, plus such following pages as are needed to hold, legibly,
the material this License requires to appear in the title page.
For works in formats which do not have any title page as such,
“Title Page” means the text near the most prominent

appearance of the work’s title, preceding the beginning of the
body of the text. VERBATIM COPYING You may copy and
distribute the Document in any medium, either commercially
or noncommercially, provided that this License, the copyright
notices, and the license notice saying this License applies to
the Document are reproduced in all copies, and that you add
no other conditions whatsoever to those of this License. You
may not use technical measures to obstruct or control the
reading or further copying of the copies you make or
distribute. However, you may accept compensation in
exchange for copies. If you distribute a large enough number
of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated
above, and you may publicly display copies. COPYING IN
QUANTITY If you publish printed copies of the Document
numbering more than 100, and the Document’s license notice
requires Cover Texts, you must enclose the copies in covers
that carry, clearly and legibly, all these Cover Texts: Front-
Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must
present the full title with all words of the title equally
prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the
covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in
other respects.

If the required texts for either cover are too voluminous to
fit legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto
adjacent pages.

If you publish or distribute Opaque copies of the Document
numbering more than 100, you must either include a machine-
readable Transparent copy along with each Opaque copy, or
state in or with each Opaque copy a publicly-accessible
computer-network location containing a complete Transparent
copy of the Document, free of added material, which the
general network-using public has access to download
anonymously at no charge using public-standard network
protocols. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of
Opaque copies in quantity, to ensure that this Transparent copy
will remain thus accessible at the stated location until at least
one year after the last time you distribute an Opaque copy
(directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors
of the Document well before redistributing any large number
of copies, to give them a chance to provide you with an
updated version of the Document. MODIFICATIONS You
may copy and distribute a Modified Version of the Document
under the conditions of sections 2 and 3 above, provided that
you release the Modified Version under precisely this License,
with the Modified Version filling the role of the Document,
thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you
must do these things in the Modified Version:

1. Use in the Title Page (and on the covers, if any) a title
distinct from that of the Document, and from those of previous
versions (which should, if there were any, be listed in the
History section of the Document). You may use the same title
as a previous version if the original publisher of that version
gives permission.

2. List on the Title Page, as authors, one or more persons or
entities responsible for authorship of the modifications in the
Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has
less than five).

3. State on the Title page the name of the publisher of the
Modified Version, as the publisher.

4. Preserve all the copyright notices of the Document.

5. Add an appropriate copyright notice for your
modifications adjacent to the other copyright notices.

6. Include, immediately after the copyright notices, a license
notice giving the public permission to use the Modified
Version under the terms of this License, in the form shown in
the Addendum below.

7. Preserve in that license notice the full lists of Invariant
Sections and required Cover Texts given in the Document’s
license notice.

8. Include an unaltered copy of this License.

9. Preserve the section entitled “History,” and its title, and
add to it an item stating at least the title, year, new authors, and
publisher of the Modified Version as given on the Title Page.
If there is no section entitled “History” in the Document,
create one stating the title, year, authors, and publisher of the
Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous
sentence.

10. Preserve the network location, if any, given in the
Document for public access to a Transparent copy of the
Document, and likewise the network locations given in the
Document for previous versions it was based on. These may

be placed in the “History” section. You may omit a network
location for a work that was published at least four years
before the Document itself, or if the original publisher of the
version it refers to gives permission.

11. In any section entitled “Acknowledgements” or
“Dedications,” preserve the section’s title, and preserve in the
section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

12. Preserve all the Invariant Sections of the Document,
unaltered in their text and in their titles. Section numbers or
the equivalent are not considered part of the section titles.

13. Delete any section entitled “Endorsements.” Such a
section may not be included in the Modified Version.

14. Do not retitle any existing section as “Endorsements” or
to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections
or appendices that qualify as Secondary Sections and contain
no material copied from the Document, you may at your
option designate some or all of these sections as invariant. To
do this, add their titles to the list of Invariant Sections in the
Modified Version’s license notice. These titles must be distinct
from any other section titles.

You may add a section entitled “Endorsements,” provided it
contains nothing but endorsements of your Modified Version
by various parties-for example, statements of peer review or
that the text has been approved by an organization as the
authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover
Text, and a passage of up to 25 words as a Back-Cover Text, to
the end of the list of Cover Texts in the Modified Version.

Only one passage of Front-Cover Text and one of Back-Cover
Text may be added by (or through arrangements made by) any
one entity. If the Document already includes a cover text for
the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may
not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by
this License give permission to use their names for publicity
for or to assert or imply endorsement of any Modified Version.
COMBINING DOCUMENTS You may combine the
Document with other documents released under this License,
under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of
the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your
combined work in its license notice.

The combined work need only contain one copy of this
License, and multiple identical Invariant Sections may be
replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the
title of each such section unique by adding at the end of it, in
parentheses, the name of the original author or publisher of
that section if known, or else a unique number. Make the same
adjustment to the section titles in the list of Invariant Sections
in the license notice of the combined work.

In the combination, you must combine any sections entitled
“History” in the various original documents, forming one
section entitled “History”; likewise combine any sections
entitled “Acknowledgements,” and any sections entitled
“Dedications.” You must delete all sections entitled
“Endorsements.” COLLECTIONS OF DOCUMENTS You

may make a collection consisting of the Document and other
documents released under this License, and replace the
individual copies of this License in the various documents
with a single copy that is included in the collection, provided
that you follow the rules of this License for verbatim copying
of each of the documents in all other respects.

You may extract a single document from such a collection,
and distribute it individually under this License, provided you
insert a copy of this License into the extracted document, and
follow this License in all other respects regarding verbatim
copying of that document. AGGREGATION WITH
INDEPENDENT WORKS A compilation of the Document or
its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution
medium, does not as a whole count as a Modified Version of
the Document, provided no compilation copyright is claimed
for the compilation. Such a compilation is called an
“aggregate,” and this License does not apply to the other self-
contained works thus compiled with the Document, on account
of their being thus compiled, if they are not themselves
derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to
these copies of the Document, then if the Document is less
than one quarter of the entire aggregate, the Document’s Cover
Texts may be placed on covers that surround only the
Document within the aggregate. Otherwise they must appear
on covers around the whole aggregate. TRANSLATION
Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of
section 4. Replacing Invariant Sections with translations
requires special permission from their copyright holders, but
you may include translations of some or all Invariant Sections

in addition to the original versions of these Invariant Sections.
You may include a translation of this License provided that
you also include the original English version of this License.
In case of a disagreement between the translation and the
original English version of this License, the original English
version will prevail. TERMINATION You may not copy,
modify, sublicense, or distribute the Document except as
expressly provided for under this License. Any other attempt
to copy, modify, sublicense or distribute the Document is void,
and will automatically terminate your rights under this
License. However, parties who have received copies, or rights,
from you under this License will not have their licenses
terminated so long as such parties remain in full compliance.
FUTURE REVISIONS OF THIS LICENSE The Free
Software Foundation may publish new, revised versions of the
GNU Free Documentation License from time to time. Such
new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing
version number. If the Document specifies that a particular
numbered version of this License “or any later version”
applies to it, you have the option of following the terms and
conditions either of that specified version or of any later
version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a
version number of this License, you may choose any version
ever published (not as a draft) by the Free Software
Foundation. ADDENDUM: How to Use This License for Your
Documents To use this License in a document you have
written, include a copy of the License in the document and put
the following copyright and license notices just after the title

page: Copyright (C) YEAR YOUR NAME.Permission is
granted to copy, distribute and/or modify this document under
the terms of the GNU Free Documentation License, Version
1.1 or any later version published by the Free Software
Foundation; with the Invariant Sections being LIST THEIR
TITLES, with the Front-Cover Texts being LIST, and with the
Back-Cover Texts being LIST. A copy of the license is
included in the section entitled “GNU Free Documentation
License”. If you have no Invariant Sections, write “with no
Invariant Sections” instead of saying which ones are invariant.
If you have no Front-Cover Texts, write “no Front-Cover
Texts” instead of “Front-Cover Texts being LIST”; likewise
for Back-Cover Texts.

If your document contains nontrivial examples of program
code, we recommend releasing these examples in parallel
under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.

*** END OF THE PROJECT GUTENBERG EBOOK FREE
AS IN FREEDOM: RICHARD STALLMAN’S CRUSADE

FOR FREE SOFTWARE ***

Updated editions will replace the previous one—the old
editions will be renamed.

Creating the works from print editions not protected by U.S.
copyright law means that no one owns a United States
copyright in these works, so the Foundation (and you!) can
copy and distribute it in the United States without permission
and without paying copyright royalties. Special rules, set forth
in the General Terms of Use part of this license, apply to
copying and distributing Project Gutenberg™ electronic works
to protect the PROJECT GUTENBERG™ concept and
trademark. Project Gutenberg is a registered trademark, and
may not be used if you charge for an eBook, except by
following the terms of the trademark license, including paying
royalties for use of the Project Gutenberg trademark. If you do
not charge anything for copies of this eBook, complying with
the trademark license is very easy. You may use this eBook for
nearly any purpose such as creation of derivative works,
reports, performances and research. Project Gutenberg eBooks
may be modified and printed and given away—you may do
practically ANYTHING in the United States with eBooks not
protected by U.S. copyright law. Redistribution is subject to
the trademark license, especially commercial redistribution.

START: FULL LICENSE

THE FULL PROJECT GUTENBERG LICENSE

PLEASE READ THIS BEFORE YOU DISTRIBUTE OR USE THIS WORK

To protect the Project Gutenberg™ mission of promoting the
free distribution of electronic works, by using or distributing
this work (or any other work associated in any way with the
phrase “Project Gutenberg”), you agree to comply with all the
terms of the Full Project Gutenberg™ License available with
this file or online at www.gutenberg.org/license.

Section 1. General Terms of Use and
Redistributing Project Gutenberg™ electronic
works

1.A. By reading or using any part of this Project Gutenberg™
electronic work, you indicate that you have read, understand,
agree to and accept all the terms of this license and intellectual
property (trademark/copyright) agreement. If you do not agree
to abide by all the terms of this agreement, you must cease
using and return or destroy all copies of Project Gutenberg™
electronic works in your possession. If you paid a fee for
obtaining a copy of or access to a Project Gutenberg™
electronic work and you do not agree to be bound by the terms
of this agreement, you may obtain a refund from the person or
entity to whom you paid the fee as set forth in paragraph 1.E.8.

1.B. “Project Gutenberg” is a registered trademark. It may
only be used on or associated in any way with an electronic
work by people who agree to be bound by the terms of this
agreement. There are a few things that you can do with most
Project Gutenberg™ electronic works even without complying
with the full terms of this agreement. See paragraph 1.C
below. There are a lot of things you can do with Project
Gutenberg™ electronic works if you follow the terms of this
agreement and help preserve free future access to Project
Gutenberg™ electronic works. See paragraph 1.E below.

1.C. The Project Gutenberg Literary Archive Foundation (“the
Foundation” or PGLAF), owns a compilation copyright in the
collection of Project Gutenberg™ electronic works. Nearly all
the individual works in the collection are in the public domain
in the United States. If an individual work is unprotected by
copyright law in the United States and you are located in the

United States, we do not claim a right to prevent you from
copying, distributing, performing, displaying or creating
derivative works based on the work as long as all references to
Project Gutenberg are removed. Of course, we hope that you
will support the Project Gutenberg™ mission of promoting
free access to electronic works by freely sharing Project
Gutenberg™ works in compliance with the terms of this
agreement for keeping the Project Gutenberg™ name
associated with the work. You can easily comply with the
terms of this agreement by keeping this work in the same
format with its attached full Project Gutenberg™ License
when you share it without charge with others.

This particular work is one of the few individual works
protected by copyright law in the United States and most of
the remainder of the world, included in the Project Gutenberg
collection with the permission of the copyright holder.
Information on the copyright owner for this particular work
and the terms of use imposed by the copyright holder on this
work are set forth at the beginning of this work.

1.D. The copyright laws of the place where you are located
also govern what you can do with this work. Copyright laws in
most countries are in a constant state of change. If you are
outside the United States, check the laws of your country in
addition to the terms of this agreement before downloading,
copying, displaying, performing, distributing or creating
derivative works based on this work or any other Project
Gutenberg™ work. The Foundation makes no representations
concerning the copyright status of any work in any country
other than the United States.

1.E. Unless you have removed all references to Project
Gutenberg:

1.E.1. The following sentence, with active links to, or other
immediate access to, the full Project Gutenberg™ License
must appear prominently whenever any copy of a Project
Gutenberg™ work (any work on which the phrase “Project
Gutenberg” appears, or with which the phrase “Project
Gutenberg” is associated) is accessed, displayed, performed,
viewed, copied or distributed:

This eBook is for the use of anyone anywhere in the
United States and most other parts of the world at no cost
and with almost no restrictions whatsoever. You may
copy it, give it away or re-use it under the terms of the
Project Gutenberg License included with this eBook or
online at www.gutenberg.org. If you are not located in the
United States, you will have to check the laws of the
country where you are located before using this eBook.

1.E.2. If an individual Project Gutenberg™ electronic work is
derived from texts not protected by U.S. copyright law (does
not contain a notice indicating that it is posted with permission
of the copyright holder), the work can be copied and
distributed to anyone in the United States without paying any
fees or charges. If you are redistributing or providing access to
a work with the phrase “Project Gutenberg” associated with or
appearing on the work, you must comply either with the
requirements of paragraphs 1.E.1 through 1.E.7 or obtain
permission for the use of the work and the Project
Gutenberg™ trademark as set forth in paragraphs 1.E.8 or
1.E.9.

1.E.3. If an individual Project Gutenberg™ electronic work is
posted with the permission of the copyright holder, your use
and distribution must comply with both paragraphs 1.E.1
through 1.E.7 and any additional terms imposed by the
copyright holder. Additional terms will be linked to the Project
Gutenberg™ License for all works posted with the permission
of the copyright holder found at the beginning of this work.

1.E.4. Do not unlink or detach or remove the full Project
Gutenberg™ License terms from this work, or any files
containing a part of this work or any other work associated
with Project Gutenberg™.

1.E.5. Do not copy, display, perform, distribute or redistribute
this electronic work, or any part of this electronic work,
without prominently displaying the sentence set forth in
paragraph 1.E.1 with active links or immediate access to the
full terms of the Project Gutenberg™ License.

https://www.gutenberg.org/

1.E.6. You may convert to and distribute this work in any
binary, compressed, marked up, nonproprietary or proprietary
form, including any word processing or hypertext form.
However, if you provide access to or distribute copies of a
Project Gutenberg™ work in a format other than “Plain
Vanilla ASCII” or other format used in the official version
posted on the official Project Gutenberg™ website
(www.gutenberg.org), you must, at no additional cost, fee or
expense to the user, provide a copy, a means of exporting a
copy, or a means of obtaining a copy upon request, of the work
in its original “Plain Vanilla ASCII” or other form. Any
alternate format must include the full Project Gutenberg™
License as specified in paragraph 1.E.1.

1.E.7. Do not charge a fee for access to, viewing, displaying,
performing, copying or distributing any Project Gutenberg™
works unless you comply with paragraph 1.E.8 or 1.E.9.

1.E.8. You may charge a reasonable fee for copies of or
providing access to or distributing Project Gutenberg™
electronic works provided that:

• You pay a royalty fee of 20% of the gross profits you
derive from the use of Project Gutenberg™ works
calculated using the method you already use to calculate
your applicable taxes. The fee is owed to the owner of the
Project Gutenberg™ trademark, but he has agreed to
donate royalties under this paragraph to the Project
Gutenberg Literary Archive Foundation. Royalty
payments must be paid within 60 days following each
date on which you prepare (or are legally required to
prepare) your periodic tax returns. Royalty payments
should be clearly marked as such and sent to the Project
Gutenberg Literary Archive Foundation at the address
specified in Section 4, “Information about donations to
the Project Gutenberg Literary Archive Foundation.”

• You provide a full refund of any money paid by a user
who notifies you in writing (or by e-mail) within 30 days
of receipt that s/he does not agree to the terms of the full
Project Gutenberg™ License. You must require such a

user to return or destroy all copies of the works possessed
in a physical medium and discontinue all use of and all
access to other copies of Project Gutenberg™ works.

• You provide, in accordance with paragraph 1.F.3, a full
refund of any money paid for a work or a replacement
copy, if a defect in the electronic work is discovered and
reported to you within 90 days of receipt of the work.

• You comply with all other terms of this agreement for
free distribution of Project Gutenberg™ works.

1.E.9. If you wish to charge a fee or distribute a Project
Gutenberg™ electronic work or group of works on different
terms than are set forth in this agreement, you must obtain
permission in writing from the Project Gutenberg Literary
Archive Foundation, the manager of the Project Gutenberg™
trademark. Contact the Foundation as set forth in Section 3
below.

1.F.

1.F.1. Project Gutenberg volunteers and employees expend
considerable effort to identify, do copyright research on,
transcribe and proofread works not protected by U.S.
copyright law in creating the Project Gutenberg™ collection.
Despite these efforts, Project Gutenberg™ electronic works,
and the medium on which they may be stored, may contain
“Defects,” such as, but not limited to, incomplete, inaccurate
or corrupt data, transcription errors, a copyright or other
intellectual property infringement, a defective or damaged disk
or other medium, a computer virus, or computer codes that
damage or cannot be read by your equipment.

1.F.2. LIMITED WARRANTY, DISCLAIMER OF
DAMAGES - Except for the “Right of Replacement or
Refund” described in paragraph 1.F.3, the Project Gutenberg
Literary Archive Foundation, the owner of the Project
Gutenberg™ trademark, and any other party distributing a
Project Gutenberg™ electronic work under this agreement,
disclaim all liability to you for damages, costs and expenses,
including legal fees. YOU AGREE THAT YOU HAVE NO

REMEDIES FOR NEGLIGENCE, STRICT LIABILITY,
BREACH OF WARRANTY OR BREACH OF CONTRACT
EXCEPT THOSE PROVIDED IN PARAGRAPH 1.F.3. YOU
AGREE THAT THE FOUNDATION, THE TRADEMARK
OWNER, AND ANY DISTRIBUTOR UNDER THIS
AGREEMENT WILL NOT BE LIABLE TO YOU FOR
ACTUAL, DIRECT, INDIRECT, CONSEQUENTIAL,
PUNITIVE OR INCIDENTAL DAMAGES EVEN IF YOU
GIVE NOTICE OF THE POSSIBILITY OF SUCH
DAMAGE.

1.F.3. LIMITED RIGHT OF REPLACEMENT OR REFUND
- If you discover a defect in this electronic work within 90
days of receiving it, you can receive a refund of the money (if
any) you paid for it by sending a written explanation to the
person you received the work from. If you received the work
on a physical medium, you must return the medium with your
written explanation. The person or entity that provided you
with the defective work may elect to provide a replacement
copy in lieu of a refund. If you received the work
electronically, the person or entity providing it to you may
choose to give you a second opportunity to receive the work
electronically in lieu of a refund. If the second copy is also
defective, you may demand a refund in writing without further
opportunities to fix the problem.

1.F.4. Except for the limited right of replacement or refund set
forth in paragraph 1.F.3, this work is provided to you ‘AS-IS’,
WITH NO OTHER WARRANTIES OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO WARRANTIES OF MERCHANTABILITY OR FITNESS
FOR ANY PURPOSE.

1.F.5. Some states do not allow disclaimers of certain implied
warranties or the exclusion or limitation of certain types of
damages. If any disclaimer or limitation set forth in this
agreement violates the law of the state applicable to this
agreement, the agreement shall be interpreted to make the
maximum disclaimer or limitation permitted by the applicable
state law. The invalidity or unenforceability of any provision
of this agreement shall not void the remaining provisions.

1.F.6. INDEMNITY - You agree to indemnify and hold the
Foundation, the trademark owner, any agent or employee of
the Foundation, anyone providing copies of Project
Gutenberg™ electronic works in accordance with this
agreement, and any volunteers associated with the production,
promotion and distribution of Project Gutenberg™ electronic
works, harmless from all liability, costs and expenses,
including legal fees, that arise directly or indirectly from any
of the following which you do or cause to occur: (a)
distribution of this or any Project Gutenberg™ work, (b)
alteration, modification, or additions or deletions to any
Project Gutenberg™ work, and (c) any Defect you cause.

Section 2. Information about the Mission of
Project Gutenberg™

Project Gutenberg™ is synonymous with the free distribution
of electronic works in formats readable by the widest variety
of computers including obsolete, old, middle-aged and new
computers. It exists because of the efforts of hundreds of
volunteers and donations from people in all walks of life.

Volunteers and financial support to provide volunteers with the
assistance they need are critical to reaching Project
Gutenberg™’s goals and ensuring that the Project
Gutenberg™ collection will remain freely available for
generations to come. In 2001, the Project Gutenberg Literary
Archive Foundation was created to provide a secure and
permanent future for Project Gutenberg™ and future
generations. To learn more about the Project Gutenberg
Literary Archive Foundation and how your efforts and
donations can help, see Sections 3 and 4 and the Foundation
information page at www.gutenberg.org.

Section 3. Information about the Project
Gutenberg Literary Archive Foundation

The Project Gutenberg Literary Archive Foundation is a non-
profit 501(c)(3) educational corporation organized under the
laws of the state of Mississippi and granted tax exempt status
by the Internal Revenue Service. The Foundation’s EIN or
federal tax identification number is 64-6221541. Contributions

to the Project Gutenberg Literary Archive Foundation are tax
deductible to the full extent permitted by U.S. federal laws and
your state’s laws.

The Foundation’s business office is located at 809 North 1500
West, Salt Lake City, UT 84116, (801) 596-1887. Email
contact links and up to date contact information can be found
at the Foundation’s website and official page at
www.gutenberg.org/contact

Section 4. Information about Donations to the
Project Gutenberg Literary Archive
Foundation

Project Gutenberg™ depends upon and cannot survive without
widespread public support and donations to carry out its
mission of increasing the number of public domain and
licensed works that can be freely distributed in machine-
readable form accessible by the widest array of equipment
including outdated equipment. Many small donations ($1 to
$5,000) are particularly important to maintaining tax exempt
status with the IRS.

The Foundation is committed to complying with the laws
regulating charities and charitable donations in all 50 states of
the United States. Compliance requirements are not uniform
and it takes a considerable effort, much paperwork and many
fees to meet and keep up with these requirements. We do not
solicit donations in locations where we have not received
written confirmation of compliance. To SEND DONATIONS
or determine the status of compliance for any particular state
visit www.gutenberg.org/donate.

While we cannot and do not solicit contributions from states
where we have not met the solicitation requirements, we know
of no prohibition against accepting unsolicited donations from
donors in such states who approach us with offers to donate.

International donations are gratefully accepted, but we cannot
make any statements concerning tax treatment of donations
received from outside the United States. U.S. laws alone
swamp our small staff.

https://www.gutenberg.org/donate/

Please check the Project Gutenberg web pages for current
donation methods and addresses. Donations are accepted in a
number of other ways including checks, online payments and
credit card donations. To donate, please visit:
www.gutenberg.org/donate.

Section 5. General Information About Project
Gutenberg™ electronic works

Professor Michael S. Hart was the originator of the Project
Gutenberg™ concept of a library of electronic works that
could be freely shared with anyone. For forty years, he
produced and distributed Project Gutenberg™ eBooks with
only a loose network of volunteer support.

Project Gutenberg™ eBooks are often created from several
printed editions, all of which are confirmed as not protected by
copyright in the U.S. unless a copyright notice is included.
Thus, we do not necessarily keep eBooks in compliance with
any particular paper edition.

Most people start at our website which has the main PG search
facility: www.gutenberg.org.

This website includes information about Project Gutenberg™,
including how to make donations to the Project Gutenberg
Literary Archive Foundation, how to help produce our new
eBooks, and how to subscribe to our email newsletter to hear
about new eBooks.

https://www.gutenberg.org/

	THE FULL PROJECT GUTENBERG LICENSE

